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1. Introduction

The reaction of e+e− annihilation into 3 jets has played historically a very prominent role
for phenomenology and allows a precise determination of the strong coupling constant αs, since
the deviation from two-jet configurations is proportional to it. The phenomenologically interesting
observables for the purpose of determining the strong coupling constant can be divided into two
big categories. On one side there are jet rates, which rely on a jet algorithm and are based on the
number of jets observed in an event, on the other side also the topology of the single events can
be studied in a systematic fashion by means of so-called event-shape observables. The popularity
of the latter is mainly due to the fact that they are well suited both for experimental measurement
and for theoretical description, since many of them are infrared and collinear safe. They describe
topological properties of hadronic final states by parameterizing the energy-momentum flow of an
event. This class of observables is also interesting for the study of hadronisation effects. Hadro-
nisation corrections usually result in a distortion of the event-shape distributions and are thus not
easily disentangled from partonic predictions. However, the study of mean values and higher mo-
ments of event shapes allows a clear separation of perturbative and non-perturbative predictions.
Furthermore, the comparison of hadronization corrections computed by general purpose Monte
Carlo programs with predictions from analytical models permits to shed some light on the effects
of hadronization corrections in the determination of αs.

We have studied jet rates, the distributions and the first five moments of six event-shape ob-
servables: thrust T (respectively, τ = 1 − T ), heavy jet mass ρ , wide and total jet broadening
BW and BT , C-parameter and the two-to-three-jet transition parameter in the Durham algorithm,
Y3. For the definitions of these variables and their historical origin we refer to [1] and references
therein. We will denote the variables collectively as y in the following, such that their two jet limit
is y → 0. Recently, with the appearance of the NNLO results, several extractions of αs have been
performed using event-shape observables [2, 3, 4, 5, 6]. Their results are summarized in Fig. 1. In
the following we present three of them [3, 5, 4].

2. αs from Event-Shape Distributions

The fixed-order QCD description of event-shape distributions is given by a perturbative ex-
pansion of the form

1
σhad

dσ
dy

(y,Q,µ) = ᾱs(µ)
dA
dy

(y)+ ᾱ2
s (µ)

dB
dy

(y,xµ)+ ᾱ3
s (µ)

dC
dy

(y,xµ)+O(ᾱ4
s ) , (2.1)

where ᾱs =
αs
2π and xµ = µ

Q , and where A, B and C are the perturbatively calculated coefficients [7]
at LO, NLO and NNLO. The distribution is normalised to the total hadronic cross section σhad in
e+e− annihilation. The dependence of (2.1) on the collision energy is only through αs and xµ and
the scale dependence of αs is determined according to the three-loop running of αs(µ).

In order to obtain reliable predictions over the full kinematical range, the perturbative fixed-
order prediction (2.1) has to be matched with resummation, which is taken into account at next-
to-leading logarithmic (NLL) accuracy in the ln R-matching scheme. For more details about the
NLLA+NNLO matching we refer to Ref. [8] and references therein.
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We have used the six event-shape observables listed in Section 1 for our fits. The measure-
ments we use have been carried out by the ALEPH collaboration [9] at eight different centre-of-
mass (CM) energies between 91.2 and 206 GeV. The perturbative QCD prediction is corrected for
hadronisation and resonance decays by means of a transition matrix, which is computed with the
MC generators PYTHIA [10], HERWIG [11] and ARIADNE [12], all tuned to global hadronic ob-
servables at MZ [13]. Corrected measurements of event-shape distributions are compared to the
theoretical calculation at particle level. For a detailed description of the determination and treat-
ment of experimental systematic uncertainties we refer to Refs. [9, 2, 3].

The combined results of six event-shape variables and eight LEP1/LEP2 CM energies is

αs(MZ) = 0.1224 ± 0.0009(stat) ± 0.0009(exp) ± 0.0012(had) ± 0.0035(theo) .

For the fitted values of the coupling constant as found from event-shape variables calculated at var-
ious orders we refer to the figures and tables of [3]. The central value of the result is slightly lower
than the central value of 0.1228 obtained from a fit using purely fixed-order NNLO predictions [2].
Furthermore the dominant theoretical uncertainty on αs(MZ), as estimated from scale variations, is
reduced by 20% compared to NLO+NLLA and the scatter among the values of αs(MZ) extracted
from the six different event-shape variables is substantially reduced. However, compared to the
fit based on purely fixed-order NNLO predictions, the perturbative uncertainty is increased in the
NNLO+NLLA fit. The reason is that in the two-jet region the NLLA+NLO and NLLA+NNLO
predictions agree by construction and therefore the renormalisation scale uncertainty is dominated
by the resummation in this region, which results in a larger overall scale uncertainty in the αs fit.

Apart from the αs determination using the standard MC generators mentioned above, we used
HERWIG++ [14] version 2.3 together with the MCNLO [15] and POWHEG [16] schemes for in-
vestigating hadronization corrections. From this study it appears that there are two “classes” of
variables. With standard hadronisation corrections from PYTHIA we obtain αs(MZ) values some
5% higher for the first class, consisting of T , C and BT , which still suffer from sizable missing
higher order corrections, than for the second class consisting of the ρ , BW and Y3, which have a
better perturbative stability [17]. This means that the PYTHIA hadronisation corrections, applied in
the αs fit, might be too small for the first class of variables, resulting in a larger αs(MZ) value. For
further details of our analysis we refer to Ref. [3].

3. αs from Moments of Event Shapes

The nth moment of an event-shape observable y is defined by

⟨yn⟩= 1
σhad

∫ ymax

0
yn dσ

dy
dy , (3.1)

where ymax is the kinematically allowed upper limit of the observable. For moments of event
shapes, one expects the hadronisation corrections to be additive, such that the cross section can be
divided into a perturbative and a non-perturbative contribution, where the non-perturbative contri-
bution accounts for hadronisation effects.

In ref. [4], the dispersive model derived in Refs. [18, 19, 20] has been used and extended
to NNLO to estimate hadronisation corrections to event-shape moments by calculating analytical
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predictions for power corrections. It introduces only a single new parameter α0, which can be
interpreted as the average strong coupling in the non-perturbative region:

1
µI

∫ µI

0
dQαeff(Q2) = α0(µI) , (3.2)

where below the IR cutoff µI the strong coupling is replaced by an effective coupling. This disper-
sive model for the strong coupling leads to a shift in the distributions

dσ
dy

(y) =
dσpt

dy
(y−ay P) , (3.3)

where the numerical factor ay depends on the event shape, while P is believed to be universal and
scales with the CM energy like µI/Q. Insertion of eq. (3.3) into (3.1) leads to

⟨yn⟩=
∫ ymax−ayP

−ayP
dy(y+ayP)n 1

σtot

dσpt

dy
(y)≈

∫ ymax

0
dy(y+ayP)n 1

σtot

dσpt

dy
(y) . (3.4)

From this expression one can extract the non-perturbative predictions for the moments of y.
The expressions derived in [4] match the dispersive model with the perturbative prediction

at NNLO QCD. Comparing these expressions with experimental data on event-shape moments, a
combined determination of the perturbative strong coupling constant αs and the non-perturbative
parameter α0 has been performed [4], based on data from the JADE and OPAL experiments [21].
The data consist of 18 points at CM energies between 14.0 and 206.6 GeV for the first five moments
of T , C, Y3, ρ , BW and BT , and have been taken from [22]. For each moment the NLO as well as
the NNLO prediction was fitted with αs(MZ) and α0 as fit parameters, except for the moments of
Y3, which have no leading 1

Q power correction and thus are independent of α0.
Compared to previous results at NLO, inclusion of NNLO effects results in a considerably

improved consistency in the parameters determined from different shape variables, and in a sub-
stantial reduction of the error on αs. Furthermore the theoretical error on the extraction of αS(MZ)

from ρ , Y3 and BW is considerably smaller than from τ , C and BT . As mentioned above, the mo-
ments of the former three shape variables receive moderate NNLO corrections for all n, while the
NNLO corrections for the latter three are large already for n= 1 and increase with n. Consequently,
the theoretical description of the moments of ρ , Y3 and BW displays a higher perturbative stability,
which is reflected in the smaller theoretical uncertainty on αs(MZ) derived from those variables.

In a second step, we combine the αs(MZ) and α0 measurements obtained from different event-
shape variables. Taking the weighted mean over all values except BW and BT , we obtain at NNLO:

αs(MZ) = 0.1153±0.0017(exp)±0.0023(th) , α0 = 0.5132±0.0115(exp)±0.0381(th) .

The moments of BW and BT have been excluded here since their theoretical description requires an
additional contribution to the non-perturbative coefficient P [4] which is unknown to NNLO.

The average of αs(MZ) is dominated by the measurements based on ρ and Y3, which have the
smallest theoretical uncertainties. From NLO to NNLO [4], the error on αs(MZ) is reduced by
a factor of two. The error on αs(MZ) is clearly dominated by the xµ variation, while the largest
contribution to the error on α0 comes from the uncertainty on the Milan factor M [19], which has
not been improved in the current study.
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NNLO event shape moments, analytic power corr.
(JADE/OPAL: Gehrmann, Jaquier, Luisoni)

NNLO+N3LLA thrust, shape function
(LEP/PETRA/SLD/AMY: Abbate et al.)

NNLO+N3LLA heavy jet mass 
(ALEPH/OPAL: Chien, Schwartz)

NNLO+N3LLA thrust
(ALEPH/OPAL: Becher, Schwartz)

NNLO three-jet rate
(ALEPH: Dissertori et al.)

NNLO+NLLA event shapes
(JADE: Bethke et al.)

NNLO+NLLA event shapes
(ALEPH: Dissertori et al.)

NNLO event shapes
(ALEPH: Dissertori et al.)

exp. th.PDG 2010:
0.1184 ± 0.0007

Figure 1: Recent determinations of αs based NNLO predictions taken from Refs. [2, 3, 4, 5, 6].

To quantify the difference of the dispersive model to hadronisation corrections from the legacy
generators, we analysed the moments of (1−T ) with hadronisation corrections from PYTHIA. As a
result, we obtained fit results for αs(MZ) which are typically 4% higher than by using the dispersive
model, with a slightly worse quality of the fit. Comparing perturbative and non-perturbative contri-
butions at

√
s = MZ, we observed that PYTHIA hadronisation corrections amount to less than half

the power corrections obtained in the dispersive model, thereby explaining the tendency towards a
larger value of αs(MZ), since the missing numerical magnitude of the power corrections must be
compensated by a larger perturbative contribution.

4. αs from Jet Rates

Very recently a new determination of αs was performed using jet rates [5]. Theoretical NNLO
predictions for jet rates [23] as a function of the jet resolution parameter ycut are compared to
ALEPH data [9] using the Durham jet algorithm, for which the distance measure is given by

yi j,D = 2 min(E2
i , E2

j ) (1 − cosθi j)/E2
vis (4.1)

where Evis denotes the energy sum of all particles in the final state. In Ref. [23] it was shown that
NNLO predictions for jet rates have only very small hadronization corrections and the theoretical
error for 10−1 < ycut < 10−2 drops below the per-cent relative uncertainty. This motivates a ded-
icated extraction of αs. The corrected ALEPH measurements for the three-jet rate are compared
to the theoretical calculation at particle level. Values for αs(MZ) are obtained by a least-squares
fit, performed separately for each ycut value in the range . A nice stability of the result is found up
to values of lnycut ≈ −4.5. As final result the value for ycut = 0.02 is taken, which represents an
optimal compromise between minimal systematic uncertainty and stability. The following values
for αs is found:

αs(MZ) = 0.1175±0.0020(exp)±0.0015(th), . (4.2)

Results from LEP2 energies give similar central values but larger statistical uncertainties. Com-
bining the errors in quadrature yields αs(MZ) = 0.1175±0.0025, which is in excellent agreement
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with the latest world average [24]. This verifies the expectations that the three-jet rate is an ex-
cellent observable for this kind of analysis, thanks to the good behaviour of its perturbative and
non-perturbative contributions over a sizable range of jet-resolution parameters.
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