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1. Introduction

Exclusive hard processes described by Generalized Parton Distributions (GPD’s) are the sub-
ject of extensive theoretical investigations for a few years (see e.g. [1, 2] and Ref. therein). The
present contribution is devoted to the important property of analyticity of such amplitudes and
its implications. The crucial issue is the compatibility of analytical and crossing properties with
QCD factorization which happens to be possible but non-trivial. The mathematical background
is provided by integral geometry manifested in the form of Radon transform [3], while the new
physical applications involve the angular distributions in hadron pairs two-photon production and
the "breakup" GPDs describing, say, the hard exclusive processes with deuteron whose survival in
its course is very unlikely.

Here we specifically address also the problem of the possible irregularities of GPDs near the
boundary and other "critical" points, the notable example being suggested by the flat pion distribu-
tion amplitude (DA) [4, 5]. Note that the possible violation of QCD factorization may be bypassed
[6] by the use of NPQCD methods relying on exact anomaly sum rule [7].

2. Analyticity, crossing and GPDs near the critical points

The leading order contribution of GPD’s to the amplitudes of hard processes -DVCS and (lon-
gitudinal) vector meson production is described by the following integrals:

H (ξ )i =
∫ 1

−1
dxHi(x,ξ )

[
1

x−ξ + iε
± 1

x+ξ − iε

]
, (2.1)

where index i describes the type of GPD, defining also the choice of ± sign. The appearance of
the same argument ξ in the numerator and denominator results from the zero mass of the produced
photon or its neglecting for vector meson. We also drop the dependence on the momentum transfer
t. It is obvious, that only the (anti)symmetric part of GPD contributes, depending on that sign,
which we will only consider in what follows, so that we will always discuss the integral,

H (ξ ) =
∫ 1

−1
dx

H(x,ξ )
x−ξ + iε

, (2.2)

dropping also the index i, as well as (anti)symmetrization index. This integral looks almost like
the dispersion relation with respect to the variable s, where contribution of the crossed channel
is usually taken into account by explicit addition of two terms in (2.1) and the reduction of the
integration region to the positive s (corresponding to positive x) only.

There is, however, the notable difference with the forward case, say, that of Deep Inelastic
Scattering. Namely, the numerator depends also on ξ , which prevents from its direct identification
as a spectral density. Nevertheless, the specific properties of H as a Radon transform makes this
dependence inessential.

Let us first consider the unphysical region |ξ |> 1. Note, that the consideration of (2.1) in the
unphysical region requires the appropriate analytical continuation of H(x,ξ ). As it was discussed
in detail in [3], it is provided by the integration of double distribution over the straight lines with
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the "unphysical" slope:

H(z,ξ ) =
∫ 1

−1
dx
∫ 1−|x|

|x|−1
dy(F(x,y)+ξ G(x,y))δ (z− x−ξ y). (2.3)

To identify this object with the physical quantity one should additionally consider the analytic
continuation in t 1. The resulting object is just Generalized Distribution Amplitude (GDA) [10].
Note that the integration limits for |ξ |> 1 are in fact [−ξ ,ξ ] as follows from the spectral properties
of double distributions. As a result, the unified expression for the DVCS and meson production
amplitudes (in the common unphysical point t = 0) takes the form:

H (ξ )i =
∫ max(1,ξ )

−max(1,ξ )
dxHi(x,ξ )

[
1

x−ξ + iε
± 1

x+ξ − iε

]
. (2.4)

These limits were in fact implicitly assumed in [3, 11] as they are required to have the polynomiality
for all ξ which will be explored in a moment.

Note also that Radon transform properties are rather different in even- and od- dimensional
spaces (see [3] and Ref. therein), so that the matrix elements involving the three external particles
are of special interest. In particular, this corresponds to the GDAs for three pions production [12]
and "breakup" GPDs, when, say, initial state deuteron does not survive in the hard reaction [?].

Note finally, that the so-called Polyakov-Weiss (PW) term [13], which originally did not
emerge as a Radon transform, may be also included in such a form (and described by the func-
tion G), allowing its consideration in the unphysical region.

Let us consider (2.4) for (ξ > 1) and expand the denominator to get:

H (ξ ) =−
∫ max(1,ξ )

−max(1,ξ )
dx

∞

∑
n=0

H(x,ξ )
xn

ξ n+1 . (2.5)

In the forward case, when one have instead of H the forward distribution which does not depend
on ξ , this series in the negative powers of ξ (corresponding to positive powers of s) explicitly
manifests the analyticity of H . In the actual case of GPD’s the key role is played by the mentioned
polynomiality property: the moments of the function H(x,ξ ), namely the integrals in x weighted
with xn, are polynomials of ξ of power n + 1. Therefore, the series is still containing only the
non-positive powers of ξ , and the analyticity property is preserved.

The proven analyticity in the unphysical region allows now to write the standard dispersion
relation instead of (2.2):

H (ξ ) =
∫ 1

−1
dx

H(x,x)
x−ξ + iε

(2.6)

Note that the integration in this equation runs again from−1 to 1 provided the singulatity of double
distribution at the edge point (0,1) is absent, so that the resulting expressions may be used for the
check of that. This formula represents the holographic property of GPD: namely, the full infor-
mation about, say, DVCS amplitude in the considered leading approximation is contained in the
one-dimensional section x = ξ (related, by the symmetry properties to x =−ξ ) of the two dimen-
sional space of x and ξ . In what follows we will study the relations of dispersion representation

1The account for finite t effect in he dispersion relation for DVCS requires a special care [8, 9].
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with the standard factorization formula. Let us consider the difference of (2.6) and (2.2):

∆H (ξ )≡
∫ 1

−1
dx

H(x,x)−H(x,ξ )
x−ξ + iε

=
∞

∑
n=1

1
n!

∂ n

∂ξ n

∫ 1

−1
H(x,ξ )dx(x−ξ )n−1 = const. (2.7)

The emerging constant term is by no means strange and is nothing else than a subtraction constant.
It is generated by the maximal powers in ξ , provided by PW terms. To quantify this important
relation, let us calculate ∆H (ξ ), by substituting the definition (2.3):

∆H (ξ ) =
∫ 1

−1
dx
∫ 1−|x|

|x|−1
dy

G(x,y)
1− y

, (2.8)

where we used the following property of delta functions in (2.3): δ (z(1− y)− x) = δ (z− x/(1−
y))/(1− y) (as |1− y| = 1− y in the integration region), while integrating the H(z,z) term. This
proof does not require the existence of infinite number of derivatives of H and shows that the
very existence of double distribution is sufficient to justify the holographic property. so it should
be stable against at least LO QCD corrections. As we see, only the G function leads to the finite
subtraction. This provides an extra justification for the original form of PW term, when it resides in
the ERBL region |x|< ξ . In that case it is obvious, that it provides no contribution to the imaginary
part of DVCS amplitude, and is reduced to finite subtraction constant:

∫
ξ

−ξ

dx
D(x/ξ )

x−ξ + iε
=
∫ 1

−1
dz

D(z)
z−1

= const, (2.9)

In particular, the amplitude in the GDA kinematical region ξ > 1 may be represented in the
form (recall that the regular behaviour at the edge point is required)

H (ξ ) =−
∫ 1/ξ

−1/ξ

dx
∞

∑
n=0

H(x,ξ )
xn

ξ n+1 (2.10)

=−
∫ 1/ξ

−1/ξ

dx
∞

∑
n=0

H(x,x)
xn

ξ n+1 +∆H .

It is clearly seen, that while the same subtraction constant as in DVCS channel appears, the co-
efficients of the higher powers of 1/ξ which, in turn, correspond to higher powers of scattering
angle, are defined by the higher moments of H(x,x). The latter may be bounded from below by the
moments of forward distribution H(x,0). This may be qualitatively understood, as the integration
line in H(x,x) is much longer (for large x) and lies to the left of that in H(x,0). From the more
formal point of view, one may recast the positivity constraints for parton distributions [1, 14] in the
form

H(x,x) < const
√

H(x,0),

where the x− independent constant is defined by the photoabsorbtion cross-section for a given
quark flavour and the transitional momentum transfer Q0 (c.f. [15] ) where leading twist approx-
imation is still applicable. Passing to the limit x→ 1 one may keep only the proton intermediate
state in the derivation of the positivity constraint which saturates it. As a result, the decrease power
β of H(x,x)∼ (1− x)β for x→ 1 is twice smaller than for H(x,0).
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This puts the lower bound for the decrease of the coefficient of higher powers of c.m. scattering
angle in (2.10). One should note that this decrease is much slower for pion pair production than for
nucleon one, because of slower decrease of (forward) pion distribution due to the quark counting
rules. In general, the angular distribution in t−channel is determined by the threshold behaviour in
s−channel.

Note also that this bound for pion may be relevant for the shape of pion DA, as combining the
ξ → 1 limit of (2.4) and (2.7) (with no subtraction in isovector channel) with soft pion theorem,
one may relate GPD at the critical point (x,x) to DA.

Conversely, the finite value of GPD at this point (for pion or maybe proton) being the natural
generalization of flat pion DA, may result in the logarithmic growth of the subtraction term with
Q2 similar to that of pion transition formfactor.

3. Conclusions

The analytical and crossing properties of hard exclusive processes involve a beautiful math-
ematics of integral geometry and has a numerous physical implications, in particular, related to
important problems of GPDs endpoint behaviour.

I am indebted to organizers and conveners, and in particular to Simonetta Liuti, for possibility
to present the talk on which this paper is based. This work was supported in part by the Russian
Foundation for Fundamental Research, (grants 09-02-01149 and 09-02-00732).
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