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Lattice QCD calculations of hadron structure have been carried out for two decades, see [1]
for a recent review. As the up- and down-quark masses are gradually lowered toward the physical
point (isospin symmetry is assumed), new questions have arisen on the way. The calculations have
reached a certain degree of maturity and consensus among different collaborations down to about
mπ = 300MeV. With the goal in mind of confronting the lattice results with hadron phenomenology,
it is useful to first discuss the quantities that are well determined experimentally. Such quantities
include the axial charge of the nucleon, the isovector momentum fraction and the electromagnetic
(e.m.) form factors (FFs). One may then focus on quantities where the lattice can be a discovery
tool, such as the generalized form factors.

I therefore start by discussing the calculation of e.m. FFs, both because they are a special case
of the GFFs and because they represent a benchmark calculation of experimentally well-determined
functions. The matrix elements of the e.m. current between two nucleon states are parametrized by
the Dirac and Pauli form factors (q = P′−P, Q2 =−q2),

〈P′,Λ′|Jµ |P,Λ〉= Ū(P′,Λ′)Γµ(q2)U(P,Λ) , Γ
µ(q2) = γ

µF1(Q2)+ iσ µν qν

2m
F2(Q2). (1)

The result of a calculation at mπ = 300MeV by the LHP collaboration is displayed in Fig. (1, top
row). It uses 2+1 flavors of domain-wall fermions at a lattice spacing of a = 0.084fm. Several
other collaborations have obtained the FFs at similar pion masses [2]. A common point among
these calculations is that the dipole form fits the data well, but the radii extracted from the fits are
significantly smaller than the phenomenological radii. Secondly, chiral effective theory predicts
a strong pion mass dependence of the Dirac and Pauli radii, but the lattice data exhibits a much
milder dependence. It may be that the mπ -range of applicability of the chiral formulae is much
smaller than 300MeV. Finite-volume effects need to be investigated in more detail too.

The approximate dipole behavior of the phenomenological FF F1(Q2) = 1
1+Q2/0.71GeV2 can

be understood as being due to the contribution of two nearby vector meson poles with opposite
residua [3]. Figure (1, bottom row) illustrates the fact that in Nature, the Dirac dipole mass lies
within 10% of the ρ meson mass. In QCD at larger mu,d however, lattice results show that the Dirac
dipole mass is significantly larger than the vector meson mass in the same theory. We note that,
since both the Dirac and Pauli radii diverge in the chiral limit, the latter must become very large
compared to the ρ Compton wavelength approaching the chiral limit.

The numerical evaluation of Wick-connected and -disconnected diagrams that contribute to
three-point functions (Fig. (1), bottom row) proceeds in a rather different way. Most collaborations
have focused on the more tractable connected contributions, thus restricting themselves to isovector
quantities. Consider in this respect the flavor structure of the e.m. FFs of the proton1,

F1,2 = 2
3 Fu− 1

3 Fd− 1
3 Fs = 1

2 Fu−d + 1
6 Fu+d−2s = 1

2 Fu−d
conn + 1

6 Fu+d
conn + 1

6(Fu+d
disc −2Fs

disc).

Figure (1, middle row), displaying the strangeness FFs [4], suggests that disconnected diagrams
contribute less than 0.01 to F1, which is negligible at low Q2 compared to the other uncertainties.

I now briefly describe the connection between the generalized parton distributions (GPDs),
which govern Deeply Virtual Compton Scattering, and the GFFs that can be computed on the

1NB. The normalization is such that Fu
1 (0) = 2, and the Sachs FFs are given by GE = F1− Q2

4M2
N

F2, GM = F1 +F2.
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Figure 1: Top row: the e.m. FFs in an Nf = 2+1 calculation using domain-wall fermions at a lattice spacing
0.084fm (0.114fm in the ‘coarse’ case). The right plot displays the Pauli FF calculated at mπ = 300MeV [5].
Middle row: calculation of the strangeness FF of the nucleon by the χQCD collaboration [4] (Nf = 2 + 1,
a = 0.12fm, mπ ≥ 600MeV). Bottom row: connected and disconnected Wick contractions contributing to
hadronic matrix elements (fig. from [4]). Right, the nucleon Dirac dipole mass [6].

lattice. The GPDs parametrize the matrix elements of the operators

OΓ(x) =
∫ dλ

4π
eiλxq(

−λn
2

)ΓPe−ig
∫ λ/2
−λ/2 dα n·A(αn)q(

λn
2

) . (2)

Here n is a light cone vector, /n≡ nµγµ , and in the following x is the momentum fraction, ∆≡P′−P,
t = ∆2 and ξ =−n ·∆/2. Different Γ matrices lead to different GPDs,

Γ = /n ; (H,E), Γ = /nγ5 ; (H̃, Ẽ), Γ = nµσ
µ j ; (HT ,ET ) and (H̃T , ẼT ). (3)

For Γ
.= /n, the ‘unpolarized’ case, the parametrization at a renormalization scale µ takes the form〈

P′,Λ′
∣∣O6n(x,µ) |P,Λ〉= 〈〈/n〉〉H(x,ξ , t,µ)+

nµ∆ν

2m
〈〈iσ µν〉〉E(x,ξ , t,µ) , (4)
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where 〈〈Γ〉〉 ≡U(P′,Λ′)ΓU(P,Λ) and U(P,Λ) is a spinor that solves the free Dirac equation. GPDs
determine the distribution of partons and their helicities in impact parameter space [7],

q(x,b⊥) =
∫ d2b⊥

(2π)2 e−i∆⊥·b⊥ H(x,ξ = 0,−∆
2
⊥) , ∆q(x,b⊥) =

∫ d2b⊥
(2π)2 e−i∆⊥·b⊥ H̃(x,ξ = 0,−∆

2
⊥) .

Mellin-moments of the GPDs, Hn(ξ , t) ≡
∫ 1
−1 dxxn−1H(x,ξ , t), are given by polynomials in

the longitudinal momentum transfer ξ ,

Hn=1(ξ , t) = A10(t), En=1(ξ , t) = B10(t),
Hn=2(ξ , t) = A20(t)+(2ξ )2C20(t), En=2(ξ , t) = B20(t)− (2ξ )2C20(t),
Hn=3(ξ , t) = A30(t)+(2ξ )2A32(t) , En=3(ξ , t) = B30(t)+(2ξ )2B32(t) , . . .

(5)

The coefficients of these polynomials are the GFFs calculated on the lattice. In the n = 1 case,
A10 and B10 coincide with F1 and F2. In the n = 2 unpolarized case, the operator is Oµ1µ2(x) =
1
2 q̄(γµ1Dµ2 + γµ2Dµ1)q and, with P̄≡ (P+P′)/2,

〈P′|Oµ1µ2(q)|P〉= P̄{µ1〈〈γµ2}〉〉A20(t)+ i
2m P̄{µ1〈〈σµ2}α〉〉∆α B20(t)+ 1

m ∆{µ1∆µ2}C20(t) . (6)

The forward-limit of A20 and B20 determine the momentum and spin decomposition of the nu-
cleon in terms of quark and gluon contributions [8]. In practice, only the first few moments n ≤ 3
are accessible on the lattice. The impact-parameter dependence b⊥ can be obtained more easily,
currently (0.4GeV)2 < ∆2

⊥ < (2.0GeV)2. The lower end of this interval is limited by momentum
quantization in a finite box, P = 2πk

L , k ∈ Z. It can potentially be overcome with twisted boundary
conditions, whereby P = θ

L + 2πk
L [9]. The upper end is limited by the inverse lattice spacing.

Figure (2, left panel) displays the n = 1,2 and 3 GFFs of the nucleon (isovector, unpolarized
case). This particular calculation is performed in a (3.5fm)3 box at a pion mass of 355MeV. For the
purpose of the comparison, the FFs have been normalized by their forward value. It is clearly seen
that the FFs become flatter as n increases. This translates into decreasing transverse radii, (right
panel). The latter have been obtained by performing dipole fits to the FF data with |t| ≤ 0.5GeV2.
The simulations are performed in boxes of size (2.5fm)3, with in addition a (3.5fm)3 simulation
at mπ = 355MeV. In the n = 1 case, a gradual increase in the (Dirac) radius is observed as the
pion mass is lowered toward its physical value. For n≥ 2, this growth in the transverse size of the
nucleon is not observed in the range of explored pion masses. This is qualitatively consistent with
the expectation from chiral effective theory, which predicts a logarithmic divergence in the n = 1
case, but finite values for the radii corresponding to higher n. However, at mπ = 355MeV one also
observes a statistically significant difference between the radii extracted from volumes (2.5fm)3

and (3.5fm)3. Since the finite-size effect is expected to increase when the pion mass decreases, it
appears necessary to check the observed trends by using large-volume simulations.

In conclusion, GPDs play a central role in describing quantitatively the three-dimensional
structure of the nucleon. Lattice QCD is ideally suited to determine the GFFs associated with their
low Mellin-moments. A handful of lattice collaborations have published results for the nucleon
structure for pion masses down to about 300MeV. A general observation is that many observables
show a very mild pion mass dependence. The non-analytic pion-mass dependence predicted by
chiral effective theory is not yet visible in the data; presumably it sets in at a lower pion mass. The
next step will therefore be to go down to 200MeV [10] with controlled uncertainties, in particular
a solid understanding of the finite-volume effects in the simulations is crucial.
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Figure 2: Left: Unpolarized isovector GFFs. Right: the corresponding radii [6].

The formalism to study transverse-momentum dependent PDFs on the lattice, relevant to semi-
inclusive DIS, has recently been studied [11]. One important aspect of the calculation is the renor-
malization of non-local operators of the type q̄(x)ΓUx,0q(0), where Ux,0 is a Wilson line. A second
essential issue is the connection between the matrix elements of this operator with Ux,0 along the
light-cone and with U in the Euclidean domain. I expect to see further developments in this field
in the near future.
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