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Most telecommunication signals contain hidden periodicities due to the periodic characteristics
involved in the signals construction (carrier frequency, baud rate, coding scheme...). These period-
icities are usually scrambled and hidden by the randomness of the transmitted message. However,
by using a cyclostationary approach, this hidden periodicity can be recovered, making the iden-
tification of telecommunication signals possible. In this paper, it is shown how cyclostationary
spatial processing techniques can limit the impact of the incoming radio frequency interference
(RFI) for phased array radio telescopes. Cyclostationarity can be exploited for RFI detection
purposes or for filtering purposes. These two RFI mitigation techniques are illustrated through
simulations on data acquired with the Westerbork Telescope and the Low Frequency Array Radio
telescope, LOFAR, in the Netherlands.
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1. What is the cyclostationarity ?

Mathematically, a cyclostationary process has the property that its statistics are periodic with
time. For example, let us consider the second order statistics given by the correlation of a given
process r(t):

Rr(t,τ) =
〈

r(t− τ

2
)r(t +

τ

2
)
〉

∞

(1.1)

where 〈.〉
∞

represents the ensemble average operator or the time average operator.
If the process is modeled as stationary then Rr(t,τ) = Rr(τ). If the process is modeled as

cyclostationary then it exists T such as Rr(t+T,τ) = Rr(t,τ). T is called the cyclic period. Review
papers on cyclostationarity can be found in Gardner [2] or Serpedin[1].

To illustrate these concepts, let us consider the following simple baseband signal, r(t) =
∑k∈Z akg(t− kT ), where ak is a random digital message with power σ2

a , g(t), its pulse shape and
T , its baud rate. The correlation of r(t) becomes :

Rr(t,τ) = σ
2
a ∑

k∈Z
g(t− kT +

τ

2
)g(t− kT − τ

2
) (1.2)

One can easily verify that Rr(t,τ) is T -periodic. So, it can be decomposed in Fourier series and the
corresponding Fourier coefficients are (k ∈ Z):

Rα= k
T

r (τ) =
σ2

a

T

∫ +∞

−∞

g(t +
τ

2
)g(t− τ

2
)exp(− j2παt)dt︸ ︷︷ ︸

rα
g (τ)

(1.3)

In practice, a direct approach is preferred and Rα
r (τ), also called the cyclic correlation, is given by:

Rα
r (τ) =

〈
r(t +

τ

2
)r(t− τ

2
)exp(− j2παt)

〉
∞

(1.4)

If Rα
r (τ) is non-zero for some cyclic frequencies, α , with α 6= 0, then r(t) can be modeled as

cyclostationary. Note that for α = 0, we retrieve the expression of the classical correlation. Figure 1
gives the plots of these previous expressions for the considered example with a rectangular pulse
function.

In the next section, these definitions and properties will be extended to the multi-dimensional
case. For simplicity, we will only consider the case τ = 0.

2. Cyclostationary spatial processing

Consider a telescope array consisting of p antennas. The p× 1 array output vector is noted
z(t). It is assumed that the narrowband condition holds and that geometric delays for each antenna
and each impinging source can be represented by phase shifts. In this case, the telescope correlation
matrix Rz can be modeled as:

Rz =
〈
z(t)zH(t)

〉
∞

= ArRrAr
H +AsRsAs

H +N
(2.1)
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where (.)H is the conjugate transpose operator, Rr is the Kr ×Kr correlation matrix due to the
Kr α-cyclostationary sources (i.e. the RFI), Rs is the Ks×Ks correlation matrix due to the Ks

others sources (i.e. stationary sources and non α-cyclostationary RFI if any) and N is the p× p
correlation matrix due to the system noise. These matrices contain the signal information. Matrices
Ar ( p×Kr) and As ( p×Ks) contain the spatial signatures of the impinging sources. At this stage,
the phased array is not calibrated. Thus, all spatial signatures are modeled as random phase vectors.

If the cosmic sources are negligible and the system noise is calibrated (i.e. Rz ≈ ArRrAr
H +

σ2I where I is the identity matrix and σ2 the system noise power ), Boonstra [3] has demonstrated
that a close estimate of the information contained in Ar can be derived from the eigenvalue decom-
position (EVD) of Rz.

Indeed, the subspace formed by the eigenvectors associated to the Kr largest eigenvalues (the
signal subspace) will span the same dimensions as the RFI spatial signature matrix, Ar, assuming
that all other signal contributions in the matrix correlation model are negligible.

The same idea can be applied on the cyclic correlation matrix which is just a multidimensional
extension of Equ. 1.4:

Rα
z =

〈
z(t)zH(t)exp(− j2παt)

〉
∞

(2.2)

where α is one of the cyclic frequencies which characterize the RFI. Note that by replacing (.)H by
a simple transpose operator (.)T , another set of cyclic frequencies can be used, depending on the
kind of modulation involved.

The great interest of the cyclic approach is that Rz
α is asymptotically RFI-only dependent

whatever will be the hypotheses on the cosmic sources or the system noise:

Rz
α = ArRr

αAr
H (2.3)

Thus, by using Rz
α rather than Rz, the RFI spatial signature estimation is more robust.

Remark: It is assumed that the Kr RFI sources have the same cyclostationary property. If not,
the algorithm will be applied on each group of RFI.

In the following sections, two illustrations of this cyclostationary approach will be presented.

3. Example of cyclostationary spatial detection

Let us note Rz(t) the instantaneous correlation matrix of the array (i.e. Rz(t) = z(t)zH(t)).
As illustrated in figure 2.a, the Fourier Transform of the data cube, formed by stacking all the
instantaneous correlation matrices, provides another data cube where the kth slice corresponds to
the cyclic correlation matrix, Rz

α , at α = k
L , L being the length of the Fourier Transform. Then,

by computing the Frobenius norm, ‖.‖F , of each slice, we obtain a blind cyclic detection criterion
which can be used even if the expected cyclic frequency is unknown.

Indeed, ‖Rz
α‖2

F = ∑
Kr
k=1 λ 2

r,k +∑
p−Kr
k=1 λ 2

n,k where λr,k are the Kr dominant singular values and
λn,k are the p−Kr other ones. Asymptotically and for the RFI cyclic frequency, the rank of Rz

α is
Kr. In particular, all the λn,k are null. Thus, a non-zero value of ‖Rz

α‖2
F will indicate the presence

of the RFI.
In practice, due the FFT finite length, Rz

α is full rank. Thus, the λn,k will be no more equal
to zero making the detector less efficient. In that case, a better (but more computational heavy)
approach could be to consider the maximum singular value only.
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Figure 1: Random binary signal, r(t) = ∑k∈Z akg(t − kT ) with g(t) rectangular. (a) Temporal view. (b)
correlation of r(t). Rr(t,τ) is T -periodic. (c) the cyclic correlation Rα

r (τ). Rα
r (τ) 6= 0 for α = k

T ,k ∈ Z. A
stationary process will provide information only at α = 0.

Figure 2.b gives an example with real data from the Westerbork radio telescope. More details
can be found in [4].

4. Example of cyclostationary spatial filtering

If Ar can be estimated, we can filter out the RFI signals by applying a projector on the telescope
output:

zcleaned(t) = P.z(t) (4.1)

where P is the spatial projector defined by P = I−Ar(Ar
HAr)

−1Ar
H and I is the pxp identity

matrix. The projector is still valid, if Ar is replaced by another matrix,Ur, which spans the same
subspace. We have seen previously that such matrix can be derived from the EVD of the correlation
matrix,Rz, or from the SVD of the cyclic correlation matrix, Rz

α .
We have applied the classic (i.e. using R) and cyclic (i.e. using Rα ) spatial filtering to real

observations acquired with the LOFAR radio telescope. The array configuration consisted of M=8
LOFAR antennas. The RFI to be filtered is a very strong transmitter (pager) at 170 MHz.

Figure 3.a shows the eigenvalues obtained from the classic and the cyclic correlation matrix.
The cyclic frequency, α , of the pager has been first estimated from the data by using the cyclic blind
detector of the previous section. The figure shows that the interferer signal subspace can be fairly
well estimated using one dimension in the cyclic decomposition, whereas it needs two dimensions

4
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Figure 2: Cyclic spatial detection. (a) The different steps from the instantaneous correlation matrix, Rz(t),
to the detection criterion, ‖Rz

α‖2
F . The spectral lines are the signature of cyclostationary RFI (b) Example

with real data acquired with the Westerbork telescope. p = 8 antennas have been used. The RFI is a GPS
satellite. We retrieve spectral lines at cyclic frequencies related to the GPS baudrate.

in the classic one. The more dimensions are used to remove the interferer, the more information
about the cosmic sources is thrown away as well. We used therefore only the eigenvector corre-
sponding to the strongest eigenvalue to build the projector for both methods. Figure 3.b shows the
effect of the projector on the pager. Using the cyclic method, the pager is removed more effectively
compared with the classic approach. More details can be found in [5].

5. Conclusions

In this paper, we have described two RFI mitigation approaches based on the cyclostationary
properties of the RFI. The first method is a blind cyclostationary detector , the second one is a cyclic
spatial filtering. Both are based on the subspace decomposition of the cyclic correlation matrix.
These methods seem to be an attractive alternative to the classic method based on (cross)-power
statistics. Feliachi ([6]) has described in her PhD manuscript other applications of cyclostationarity
for phased array radio telescopes.
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Figure 3: Spatial filtering (SF) of real data acquired with the LOFAR telescope. p = 8 antennas have been
used. (a) The eigenvalue decomposition of the classic and the cyclic correlation matrices. The correlation
matrices have been estimated over L = 65536 samples. (b) Spectrum of one antenna output after applying
cyclic and classic spatial filtering. A strong transmitter is present in the dataset at 170 MHz.
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