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The Kuiper Belt is a remnant of the primordial Solar System. Measurements of its size distri-

bution constrain its accretion and collisional history, and the importance of material strength of

Kuiper elt objects. Small, sub-kilometer-sized, Kuiper Belt objects elude direct detection, but the

signature of their occultations of background stars shouldbe detectable. Such an occultation event

lasts typically a fraction of a second, thus making it a classical high time-resolution observation.

Here we report an analysis of archival data of HST’s Fine Guidance Sensors (FGS), that reveals

an occultation by such a small object. The detection introduces the FGS as a valuable HTRA

instrument. We discuss the statistical aspects regarding the validation of the detection claim, and

its physical implications.
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1. Introduction

A small Kuiper Belt object (KBO) crossing the line of sight toa star will partially obscure
the stellar light, an event which can be detected in the star’s light curve. For visible light, the
characteristic scale of diffraction effects, known as the Fresnel scale, is given by

(

λa/2
)1/2

≈

1.3km, wherea≈ 40AU is the distance to the Kuiper Belt andλ ≈ 600nm is the wavelength of
our observations.

Diffraction effects will be apparent in the star’s light curve as a result of occulting KBOs
provided that both the star and the occulting object are smaller than the Fresnel scale[1, 2]. Oc-
cultations by objects smaller than the Fresnel scale are in the Fraunhofer regime. In this regime
the diffraction pattern is determined by the size of the KBO and its distance to the observer, the
angular size of the star, the wavelength range of the observations and the impact parameter between
the star and the KBO. The duration of the occultation is approximately given by the ratio of the
Fresnel scale to the relative velocity perpendicular to theline of sight between the observer and the
KBO. Because the relative velocity is usually dominated by Earth’s velocity around the Sun, which
is 30kms−1, typical occultations only last a short time of the order of atenth of a second.

Extensive ground-based efforts have been conducted to lookfor optical occultations[3 – 6].
So far, these visible searches have announced no detectionsin the region of the Kuiper Belt
(30− 60AU), but one of these quests claims to have detected some events beyond 100AU and
at about 15AU (Ref. [4]). Unfortunately, ground-based surveys may suffer from a high rate of
false-positives owing to atmospheric scintillation, and lack the stability of space-based platforms.
The ground-breaking idea to search for occultations in archival RXTE X-ray data resulted in sev-
eral claimed occultation events[7]. Later, revised analysis of the X-ray data[8 – 11] concluded that
the majority of the originally reported events were most probably due to instrumental dead-time
effects. Thus, previous reports of optical and X-ray eventsremain dubious[5] and their inferred
KBO abundance is inconsistent with the observed break in theKBO size distribution, which was
obtained from direct detections of large KBOs[12 – 14]. Furthermore, they are also difficult to rec-
oncile with theoretical expectations, which predict collisional evolution for KBOs smaller than a
few kilometers in size[15, 16] and hence a lower KBO abundance than inferred from extrapolation
from KBOs with radiir > 50km.

2. The Fine Guidance Sensors Data set

There are three Fine Guidance Sensors (FGS) on board of Hubble Space Telescope (HST).
Each FGS consists of four photomultipliers (PMTs). NominalHST operation uses two FGS for
guiding, with each FGS observing its own guide star. The photon counts recorded by each FGS are
therefore different, but global instrumental artefacts and observatory level transients will display in
both FGS and can therefore be identified and removed.

For the past 14 years, the FGS have been collecting photometric measurements of stars with
40Hz time resolution, allowing for the detection of a KBO occultation diffraction pattern rather
than a simple decrease in the photon count.

Observations of the inclination distribution of large KBOsfind that about 75% have an inclina-
tion angle|i| . 20◦[17 – 19]. We therefore divide the FGS observations into a lowecliptic latitude
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(|b| < 20◦) and a high ecliptic latitude (|b| > 20◦) sample. The high-ecliptic latitude observations
provide an excellent control sample.

The FGS guide stars span a broad range of magnitudes and spectral types. The signal-to-noise
ratio, S/N, in a 1/40sec data bin depends on the magnitude of the star. We derived the angular sizes
of guide stars by fitting the 2MASS[21] JHK and USNO-B1 BR[22]photometry with a black-body
spectrum. About 66% of the stars in our data set turned out to subtend angular sizes less than 0.5
of the Fresnel scale at a distance of 40AU. The diffraction pattern that is produced by a sub-km
sized KBO occulting an extended background star is smoothedover the finite stellar disk. This
effect becomes clearly noticeable for stars that subtend sizes larger than about 0.5 of a Fresnel
scales[1, 2] and it reduces the detectability of occultation events around such stars.

3. Detection Procedure

Our detection algorithm performs a template search with theoretical light curves and uses a
χ2 fitting procedure to identify occultation candidates. Our survey is most likely to detect KBO
occultation events caused by objects that are 200−500m in radius given the S/N of our data and
for a power-law index of the KBO size distribution,q, between 3 and 4.5. Occultation events in
this size range are in the Fraunhofer regime. The theoretical light curves for our search algorithm
are therefore calculated in the Fraunhofer regime. Our templates are calculated for various impact
parameters assuming a point source background star and are integrated over the 400− 700nm
wavelength range of the FGS observations. For a given impactparameter between the KBO and
the star, our theoretical light curves have three free parameters that we fit for. The first is the
mean number of photon counts, which is the normalization of the light curve. The second is the
amplitude of the occultation, which is proportional to the size of the KBO, and the third is the
width of the occultation, which is independent of the objectsize, and is determined by the ratio
of the Fresnel scale to the relative speed between HST and theKBO perpendicular to the line of
sight. This relative speed is determined by the combinationof HST’s velocity around Earth, Earth’s
velocity around the Sun and the velocity of the KBO itself. Weuse this information to restrict the
parameter space for the template widths in our search such that we are sensitive to KBOs located
at the distance of the Kuiper Belt between 30AU and 60AU.

4. Statistical Validation

The significance of occultation candidates can be measured by their∆χ2 which is defined here
as the difference between theχ2 calculated for the best fit of a flat light curve, which corresponds
to no event, and theχ2 of the best fit template. Occultation events have large∆χ2 , since they
are poorly fit by a constant. Cosmic ray events, which give rise to one very large photon count
reading in a 40Hz interval, can also result in a large∆χ2 but the fit of the occultation template
is very poor. We examined all flagged events for which the template fit of the diffraction pattern
was better than 15σ . About a handful of false-positives where flagged by our detection algorithm
that have a value of∆χ2 comparable to or larger than the occultation event we consider genuine.
However, in all cases these false-positives were caused by a1Hz jitter due to the displacement
of the guide star from its null position. To determine the∆χ2 detection criterion for our search
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algorithm and to estimate the probability that detected events are due to random noise we use the
bootstrap technique[23]. Specifically, from a given FGS time series of lengthN we randomly
selectedN points with repetitions and created an ’artificial’ time series from it. We analyzed these
’artificial’ data sets using the same search algorithm that we applied to the actual FGS data. This
technique creates random time series with noise propertiesidentical to those of the actual data, but
it will lose any correlated noise. Therefore, this technique is justified if there is no correlated noise
in the data sets. To look for correlated noise we calculated the autocorrelation function, with lags
between 0 to 1sec. Most of the data sets are free of statistically significant correlated noise. The
∼ 12% of the data sets that did show correlated noise exceeding4σ , which was often due to slopes
(e.g., long-term variability) in the data sets, were excluded from the bootstrap analysis.

The ability to detect an occultation event of a given size KBOdepends on the impact parameter
of the KBO, the duration of the event, the angular size of the star and the S/N ratio of the data. We
determined the detection efficiency of our survey by recovering synthetic events that we planted
into the observed photometric time series by multiplying the actual FGS data with theoretical light
curves of KBO occultation events. The synthetic events correspond to KBO sizes ranging between
130m< r < 650m, they have impact parameters from 0 to 5.5 Fresnel scales and a relative velocity
distribution that is identical to that of the actual FGS observations. To account for the finite angular
sizes of the stars we generated light curve templates with stellar angular radii of 0.1, 0.2, 0.3, 0.4,
0.6, 0.8 and 1 Fresnel scales distributed according to the actual distribution of the FGS guide stars
angular radii, assuming a KBO distance of 40AU. The modified light curves with the synthetic
events were analyzed using the same search algorithm that weused to analyze the FGS data. We
normalize our detection efficency for a given size KBO,η

(

r
)

, to 1 for an effective detection cross
section with a radius of one Fresnel scale.

The detection efficiency of our survey is∼ 0.05 (∼ 0.6) for objects withr = 200m (r = 500m)
located at 40AU. Note that this value for the detection efficency already accounts for the angular
radii distribution of the guide stars

5. First Detection

We applied our search procedure so far on four and a half yearsof archival FGS data, which
contain about 12,000 star hours of low ecliptic latitude (|b| < 20◦) observations. This search has
yielded so far one single detection, at ecliptic latitude 14◦, (Fig. 1). The best-fit parameters yield
a KBO size ofr = 520±60m and a distance of 45+5

−4 AU where we assumed a circular KBO orbit
and an inclination of 14◦. We have already reported about this detection in a Nature paper[24].

Using our bootstrap simulations, we estimate a probabilityof ∼ 2% that such an event is
caused by statistical fluctuations over the whole analyzed FGS data set. We note that for objects on
circular orbits around the Sun two solutions can fit the duration of the event. However, the other
solution is at a distance of 0.07AU from Earth, and is therefore unlikely. It is also unlikely that
the occulting object was located in the asteroid belt, because the expected occultation rate from
asteroids is about two orders of magnitude less than our implied rate. Furthermore, an asteroid
would have to have an eccentricity of order unity to be able toexplain the duration of the observed
occultation event.
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Figure 1: Photon counts as a function of time of the candidate occultation event observed by FGS2.
(a) The photon count spanning 62 seconds around the occultation event. (b) The event in detail. The red
crosses are the FGS data points with Poisson error bars, the dashed blue line is the theoretical diffraction
pattern (calculated for the 400−700nm wavelength range of the FGS observations), and the pink squares
correspond to the theoretical light curve integrated over 40Hz intervals. (Figure first published in [24])

5



P
o
S
(
H
T
R
A
-
I
V
)
0
2
4

Detecting a small Kuiper Belt object using archival data of HST’s Fine Guidance Sensor Shay Zucker

6. Physical Implications

Using the KBO ecliptic latitude distribution from ref. [19], our detection efficiency, and our
single detection, we constrain the surface density around the ecliptic (averaged over−5◦ < b < 5◦

of KBOs with radii larger than 250m to 2.1+4.8
−1.7×107 deg−2[24]. This surface density is about three

times the implied surface density at 5.5◦ ecliptic latitude and about five times the surface density at
8◦−20◦ ecliptic latitude. This is the first measurement of the surface density of hectometer-sized
KBOs and it improves previous upper limits by more than an order of magnitude[3, 6].

Figure 2 displays our measurement for the sub-kilometer KBOsurface density and summarizes
published upper limits from various surveys. Our original data analysis focused on the detection of
KBOs located at the distance of the Kuiper Belt between 30 and60AU. To compare our results with
previously reported ground-based detections beyond 100AU[4], we performed a second search of
the FGS data that was sensitive to objects located beyond theclassical Kuiper Belt. Our results
challenge the reported ground-based detections of two 300m-sized objects beyond 100AU. Given
our total number of star hours and a detection efficency of 3% for 300m-sized objects at∼ 100AU
we should have detected more than twenty occultations. We therefore rule out the previously
claimed optical detections by more than 5σ . This result accounts for the broad latitude distribution
of our observations (that is,|b| < 20◦) and the quoted detection efficiency of our survey includes
the effect of the finite angular radii of the guide stars at 100AU.

The KBO cumulative size distribution is parameterized byN
(

> r
)

∝ r1−q, whereN
(

> r
)

is
the number of objects with radii greater thanr, andq is the power-law index. The power-law index
for KBOs with radii above∼ 45km is∼ 4.5 (refs. [13, 16]) and there is evidence for a break
in the size distribution at aboutrbreak≈ 45km (refs. [12 – 14]). Hence we use this break radius
and assume a surface density for KBOs larger thanrbreak of 5.4deg−2 around the ecliptic[20].
Accounting for our detection efficiency, the velocity distribution of the HST observations, and
assuming a single power-law for objects with radii less than45km in size, we findq = 3.9+0.3,+0.4

−0.3,−0.7

(1σ and 2σ errors) below the break[24]. Our results firmly show a deficitof subkilometer-sized
KBOs compared to large objects. This confirms the existence of the previously reported break
and establishes a shallower size distribution extending two orders of magnitude in size down to
sub-kilometer-sized objects. This suggests that sub-kilometer-sized KBOs underwent collisional
evolution, eroding the smaller KBOs. This collisional grinding in the Kuiper Belt provides the
missing link between large KBOs and dust, producing debris disks around other stars. Currently,
our results are consistent with a power-law index of strength-dominated collisional cascade[16],
q = 3.5, within 1.3σ and with predictions for strengthless rubble piles[15],q = 3.0, within 2.4σ .
An intermediate value of 3< q < 3.5 implies that KBOs are strengthless rubble piles above some
critical size,rc < r < 45km, and strength dominated below it,r < rc. Our observations constrain
rc for the first time to our knowledge. At the 2σ level we findrc > 3km.

Using our estimate for the size distribution power-law index (q = 3.9) and our KBO surface
density for 250m-sized KBOs at an ecliptic latitude ofb = 5.5◦, which is the ecliptic latitude of
the RXTE observations of Scorpius X-1, we predict that thereshould be about 3.6× 109 objects
of radius 30m per square degree. This is about 150 times less than the original estimate from X-
ray observations of Scorpius X-1 that reported 58 events[7], and it is about 30 times less than the
revised estimate from the same X-ray observations, which concludes that up to 12 events might be
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Figure 2: The results from our FGS survey are shown in red and are presented in three different ways.
(1) The red cross is derived from our detection and represents the KBO surface density around the ecliptic
(averaged over−5◦ < b < 5◦) and is shown with 1σ error bars. The cross is plotted atr = 250m, which is
roughly the peak of our detection probability (2) The upper and lower red curves correspond to our upper
and lower 95% confidence levels which were derived without assuming any size distribution. (3) The region
bounded by the two straight red lines falls within 1σ of our best estimate for the power-law size distribution
index, that is,q = 3.9± 0.3, which was calculated for low ecliptic latitudes (|b| < 5◦). These lines are
anchored to the observed surface density atr = 45km. For comparison, we also show three other lines
(green, blue, turquoise). The green (long-dashed) line is the observed size distribution of large KBOs (that
is, r > 45km), which hasq= 4.5, extrapolated as a single power-law to small sizes. The blue (short-dashed)
line is a double power-law withq = 3.5 (collisional cascade of strength-dominated bodies) for KBOs with
radii less than 45km andq = 4.5 above. The turquoise (dot-dashed) line corresponds toq = 3.0 (collisional
cascade of strengthless rubble piles) for KBOs below 45km insize. All distributions are normalized to
N

(

> r
)

= 5.4deg−2 at a radius of 45km (ref. [20]. In addition, 95% upper limits from various surveys are
shown in black (refs. [3, 5, 6, 8 – 10, 25]. We note that a power-law index of 3.9 was used for calculating the
cumulative KBO number density from the RXTE observations. (Figure first published in [24])
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actual KBO occultations[8]. Our results rule out the implied surface density from these 12 events
at 7σ confidence level. One can reconcile our results and the claimed X-ray detections only by
invoking a power-law index ofq≈ 5.5 between 250m and 30m. More recent X-ray work reports
no new detections in the region of the Kuiper Belt but places an upper limit of 1.7× 1011deg−2

for objects of 50m in radius and larger[10]. This is consistent with the KBO surface density of
N

(

> 50m
)

= 8.2×108 deg−2 that we derive by extrapolating from our detection in the hectometer
size range.

The statistical confidence level on our detection is 98%. However, our conclusions that there
is a significant break in the size distribution and that collisional erosion is taking place and the
significant discrepancy with previously claimed occultation detections rely on the low number of
events we discovered. These conclusions would only be strengthened if this event was caused by
an unlikely statistical fluctuation or an as-yet-unknown instrumental artefact.

Ongoing analysis of the remaining FGS data, which will triple the number of star hours, to-
gether with further development of our detection algorithm(that is, including a larger number of
light-curve templates) holds the promise of additional detections of occultation events and will
allow us to constrain the power-law index of the KBO size distribution further.

7. Concluding Remark

Our detection of a small KBO using the archival data of the FGSdemonstrates the huge po-
tential of the FGS and probably similar future instruments.The combination of the high time
resolution at the level of 40Hz and the location on a space platform renders this instrument ideal
for occultation studies. We hope that other KBO occultationsurveys, as well as other optical HTRA
studies, benefit from our experience with the FGS.
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