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Recent results obtained with the Pierre Auger Observatory are described. These include mea-

surements of the spectrum, anisotropies and composition ofultra-high energy cosmic rays. The

ankle of the spectrum is measured at 4×1018 eV and a suppression above 3×1019 eV consis-

tent with the GZK effect is observed. At energies above 5.5× 1019 eV a correlation with the

distribution of nearby extragalactic objects is found, including an excess around the direction of

Centaurus A, the nearest radio loud active galaxy. Measurements of the depth of shower maxi-

mum and its fluctuations suggest a gradual change in the average mass of the primary cosmic rays

(under standard extrapolations of hadronic interaction models), being the results consistent with a

light composition consisting mostly of protons at few×1018 eV and approaching the expectations

from iron nuclei at 4×1019 eV. Upper bounds on the photon fraction and the neutrino fluxes are

also obtained.
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1. Introduction

The Pierre Auger Observatory, built near the town of Malargüe in Argentina, has been gath-
ering data since January 2004 [1]. It reached its baseline design covering 3000 km2 with 1600
water Cherenkov detectors overlooked by 24 fluorescence telescopes by mid 2008 and by the end
of 2009 had accumulated a total exposure of about twenty thousand km2 sr yr, much larger than that
of all previous air shower experiments combined. The surface detector has a duty cycle of almost
100 %, collecting then the vast majority of the data which areused for spectrum measurements
and anisotropy searches. On the other hand, simultaneous observations with both the fluorescence
and surface detectors are possible for∼ 15% of the events (those observed during moonless nights
with no clouds), for which the longitudinal development in the atmosphere as well as the lateral
profile on the ground can be measured. This allows the cross calibration between the two detection
techniques, since the UV fluorescent light emitted by the nitrogen molecules excited by the electro-
magnetic component of the air shower provide an almost calorimetric measurement of the energy
of the primaries. It also allows to determine the depth of maximum development of the shower,
which encodes precious information on the composition of the primaries and the properties of the
first hadronic interactions. The studies of the cosmic rays at the highest energies with the Auger
Observatory has already allowed to start addressing many ofthe old questions that motivated its
construction by measuring the features present in the spectrum, searching for anisotropies in the
cosmic ray arrival directions distribution or constraining the composition of the primary cosmic
rays.

2. Spectrum

In order to determine the cosmic ray spectrum, a reliable estimate of the exposure is necessary,
and hence a strict event selection is performed requiring that the detector with the largest signal be
surrounded by a full hexagon of working detectors (for high energy anisotropy searches instead,
a relaxed trigger requires only 5 active detectors around the ‘hottest’ one and that the shower
core be contained in an active triangle). Events with zenithangles below 60◦ are used in the
following studies and in this case the surface array is fullyefficient only above 3 EeV (where
1 EeV≡ 1018 eV), in which case all showers trigger at least three detectors and can hence be
reconstructed. Below this energy the surface detector efficiency becomes less certain (depending
in particular on the composition of the cosmic rays), so thatthe spectrum is obtained instead using
hybrid events. The resulting measured spectrum [2] above 1 EeV is shown in Fig. 1. A piece
wise fit using power laws (dN/dE ∝ E−α ) shows that there are two clear transitions at 4.1 EeV
and 29 EeV. The first feature is the so-called ankle, in which the spectral index changes from
α = 3.26± 0.04 to 2.59± 0.02, and the second feature involves a transition to a much steeper
spectrum (the power law fit leading toα = 4.3±0.2), with the spectrum falling to half the value that
would be obtained from an extrapolation of the lower energy fit atE1/2 ≃ 40 EeV. One has to keep in
mind that systematic effects on the energy determination amount to 22%, and are hence significant.
In particular, the different normalization of the spectrummeasured by the HiRes experiment, also
shown for comparison in fig. 1, is most likely due to a systematic energy mismatch between the
two experiments.
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Figure 1: Spectrum measured above 1 EeV (solid dots) and power law fits with breaks (dotted line). For
comparison also the HiRes measurements are displayed (opendots).

The physical origin of the ankle is still uncertain, being the main candidate scenarios to explain
this feature those relating it to the transition from a dyinggalactic component to a harder extragalac-
tic component becoming dominant, or alternatively the so-called dip-scenario [3], in which cosmic
rays are assumed to be extragalactic protons down to energies below 1 EeV and the concave shape
observed arises from the effect of energy losses by pair creation with cosmic microwave back-
ground (CMB) photons. To properly fit the observed spectral shape this last scenario requires soft
spectra at the sources (α at the source being typicallyαg ≃ 2.4-2.7) and/or strong evolution of
the sources with redshift, what makes the distant sources intrinsically brighter (or more abundant)
so that a larger fraction of the observed protons come from far away and are hence more affected
by interactions with CMB photons. Also an upward shift of theenergy scale of Auger by∼ 40%
would be required in this scenario to fit the location of the dip in the spectrum.

Anisotropy measurements will help to distinguish among thetwo scenarios, because the galac-
tic/extragalactic transition may lead to measurable dipole type patterns in the arrival direction dis-
tribution resulting from the diffusive escape of the galactic cosmic rays, and already significant
constraints have been obtained by Auger at EeV energies [4].Also composition measurements are
important because galactic cosmic rays at EeV energies are expected to be dominated by heavy
nuclei, since their confinement by galactic magnetic fields is a rigidity dependent effect. Enhance-
ments of the Auger observatory to improve the sensitivity down to energies of 1017 eV, such as the
HEAT fluorescence detectors or the AMIGA infill and muon detectors, will help to shed light on
these issues in the near future.

The second feature mentioned, i.e. the suppression observed at the highest energies, is similar
to the expectations from the so called GZK effect associatedto the attenuation of extragalactic
protons by photo-pion production off CMB photons (this suppression was predicted by Greisen
and Zatsepin and Kuz’min just after the discovery of the CMB). Also the photodisintegration of
nuclei as heavy as iron would lead to similar features, whilelighter nuclei would instead show a
suppression down to a lower energy threshold, in approximate proportion to their masses. Note
that a change in the injection spectrum at the sources may also contribute in part to the observed
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Figure 2: Arrival directions of the events above 55 EeV (dots) and 3.1◦ circles around the directions towards
AGN in the VCV catalog closer than 75 Mpc.

spectral shape.

3. Anisotropies

Searches for localized anisotropies are motivated by the fact that cosmic ray trajectories in
galactic and extragalactic magnetic fields become straighter as the energy increases, being for in-
stance the typical deflection for a nucleus of chargeZ traveling a distanceL in the galactic field
(for which the regular component has a strength of∼ 3 µG coherent over scales∼ kpc) of

δ ≃ 3◦Z

(

B
3 µG

)(

L
kpc

)(

60 EeV
E

)

. (3.1)

This gives then the hope that cosmic ray astronomy may becomefeasible at ultra-high energies.
On the other hand, since above the GZK threshold the energiesof extragalactic cosmic rays are
significantly attenuated as they propagate through the cosmic photon backgrounds, setting a suffi-
ciently high energy threshold implies that only sources within a relatively close-by neighborhood
can contribute to the fluxes observed at Earth. For instance,for a uniform distribution of proton
sources 90% of the cosmic rays reaching the Earth with energies above 60 EeV should have been
produced within about 200 Mpc [5], and comparable ‘GZK horizons’ are also found in the case of
Fe sources. Then, an efficient way to search for an anisotropypattern, before any individual source
clearly stands up above the background, is to look for a correlation within a certain angular window
between the arrival directions of the events above a certainthreshold energy and the location of a
certain type of candidate sources within a given distance.

One class of potential source population that may be able to accelerate particles up to these
extreme energies is the Active Galactic Nuclei (AGN), consisting of the supermassive black holes
(with masses up to∼ 109M⊙) accreting matter in the center of galaxies and emitting powerful jets.
An analysis performed by the Auger Collaboration [6, 7] indeed established a correlation with the
AGN in the Véron Cetty and Véron (VCV) catalog (which is actually a compilation of catalogs).
This correlation was most significant for events above 55 EeVand angular separations of less than
3.1◦ from AGN closer than 75 Mpc. In the latest study with data up tothe end of 2009, the fraction
of events correlating within those parameters (excluding the events from the initial period used to
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Figure 3: Left panel: map of arrival directions of the events above 55 EeV and AGNs observed in X-rays by
SWIFT. Right panel: Likelihood contours (1, 2 and 3σ ) vs. the isotropic fraction and the smoothing angular
scaleσ .

fix those values) is 38+7
−6%, well above the 21% that would be expected if the distribution were

isotropic [8]. A map of the observed arrival directions (dots) in galactic coordinates is shown in
fig. 2, displaying also circles of 3.1◦ radius around the location of nearby VCV AGN. One finds that
29 out of the 69 events do indeed fall inside one of the circles. Note that due to obscuration effects
the catalogs are particularly incomplete near the galacticplane, and hence it is understandable that
most of the events within 10◦ of the galactic plane do not correlate with objects in the catalog.

Alternative studies with different catalogs were also performed. For instance, figure 3 (left
panel) displays the same events and the distribution of nearby (within 200 Mpc) AGN observed in
X-rays by the SWIFT satellite. The size of the stars in the plot is proportional to the measured X-ray
fluxes, to a weight proportional to the attenuation expecteddue to the GZK effect and to the relative
exposure of the observatory in that direction. Smoothing out the sources in this map with gaussian
windows of a given angular scale, and adding a certain fraction fiso of isotropic background, a
likelihood test leads to optimal parameters (displayed in the right panel) corresponding to angular
scales below∼ 10◦ and isotropic fractions between 40 and 80%. It is clear that amodel consisting
of only the sources in the catalog with deflections of a few degrees would not be consistent with
the data. The isotropic fraction that is required could wellbe accounting for the faint or faraway
sources not included in the catalog, or for the contributionfrom a strongly deflected heavy cosmic
ray component. We note that the actual sources of cosmic raysmay be different than the AGN (e.g.
they could be gamma ray bursts, galaxy clusters or collidinggalaxies), and hence in the studies
described the AGN may just be acting as a tracer of a differentbut similarly distributed population.
Also the angular scales inferred are only indicative and maynot reflect the actual deflection suffered
by cosmic rays, since the closest AGN to an event need not be its source.

It is important that the correlation with nearby extragalactic objects observed is consistent with
cosmic rays from more distant sources having lost energy in accordance with the flux suppression
seen in the energy spectrum, and hence this further supportsthe interpretation that this suppression
is related to the GZK effect and not just due to the exhaustionof the sources.

A significant concentration of events is found around the location of Centaurus A (correspond-
ing to the largest star in the left panel of fig. 3), which is particularly interesting because this AGN
lies at only∼ 4 Mpc from us. Figure 4 shows the number of observed events as afunction of
the angular distance from Cen A together with the isotropic expectations (average and 68, 95 and
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Figure 4: Cumulative number of events vs. the angular distance from Centaurus A, compared to the isotropic
expectation.

99.7% expected isotropic dispersion). The most significantdeparture from isotropy is seen for 18◦,
for which 13 events are observed while only 3 are expected. Whether these events come from
Cen A or from other sources, such as from the Centaurus cluster lying behind (at∼ 45 Mpc) is still
unclear, but this is certainly a region that looks speciallypromising for future anisotropy searches.

4. Composition

The other important piece of information one would like to know about the cosmic rays is their
composition, i.e. whether they are protons or heavier nuclei and if there are some detectable fluxes
of photons or neutrinos. This knowledge could also help to better understand the origin of the
different features in the spectrum and the properties of theacceleration and propagation processes.

Purely electromagnetic showers, like those initiated by photons, develop by a combination
of e± pair production processes by photons and of electron (or positron) bremsstrahlung, so that
after each interaction length the number of particles in theshower essentially doubles. Hence, the
total number of particles grows exponentially with the grammage traversed, until the energies of
the individual particles fall below a critical valueEc ≃ 86 MeV for which thee± energy losses by
ionization become important and the shower begins to attenuate. At the maximum of the shower
the number of particles is thenNmax≃ E/Ec ≃ 1011E/EeV and the depth of shower maximum
Xmax depends logarithmically on the energy of the primary (note that the radiation length in air is
X0 = 37 g/cm2, and the interaction length isλ ≃ X0ln2, so that there are typically 30-40 interaction
lengths before the ultra-high energy photon shower reachesthe maximum).

Hadronic showers develop differently because in the interaction of a proton with a nucleus in
the air a very large number, of order∼ 102 at the highest energies, of secondaries are produced.
These secondaries are mostly pions, and the neutral ones (amounting to about 1/3 of the total) im-
mediately decay into two photons and feed the electromagnetic component of the shower, while the
charged ones will reinteract hadronically producing againa large number of pions. This process
repeats typically forn ≃ 5 or 6 times until the individual pion energies are below a fewtens of
GeV and the charged pions are able to decay before reinteracting, producing in this way muons
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Figure 5: Measured values ofXmax (left) and its RMS (right) as a function of energy.

and neutrinos, which carry away a fraction(2/3)n ≃ 10% of the primary energy. The remaining
∼ 90% is what went into the electromagnetic component throughthe neutral pions of the different
generations. Since the multiplication of particles in an hadronic shower proceeds at a faster rate
than in the case of photon primaries, the maximum of the shower is reached earlier. The other dis-
tinguishing signature of hadronic showers is the presence of a sizeable number of muons reaching
the ground. In the case of primary nuclei, a simple description can be obtained with the so-called
superposition model, which considers the shower produced by a nucleus of mass numberA and
energyE as being a collection ofA showers produced by nucleons of energyE/A. The resulting
shower will then develop earlier (since the depth of maximumof a proton shower scales as logE)
and will also have smaller fluctuations, since the individual maxima of theA subshowers get av-
eraged out. These two observables (Xmax and its fluctuations) allow then to get information on the
cosmic ray composition. The results of the measurements performed with the Auger fluorescence
detectors [9] are displayed in figure 5, together with the predictions for proton and Fe primaries
obtained using different hadronic interaction models, which actually need to be extrapolated to
energies well beyond those measured at accelerators, and are hence still affected by significant
uncertainties. A transition from a light composition at fewEeV towards one approaching the ex-
pectations from heavier nuclei (even close to those of iron)at∼ 40 EeV is observed. One has to
keep in mind that an increase in the proton nucleus cross section beyond what is considered in the
usually adopted hadronic models would also affect the inferred nuclear masses since in this case
protons could mimic the expected behavior of heavier nuclei.

The values ofXmax shown in figure 5 also indicate that the fraction of showers that could
be produced by photons is small, since those would be deeply penetrating and hence lead toXmax

values larger than the predictions for protons. Moreover, amore restrictive constraint on the photon
fraction can be obtained using the larger statistics of the surface detector and exploiting the fact
that purely electromagnetic showers, having no muonic component, lead to slower rise-times of
the signals in the water Cherenkov detectors, and also developing deeper in the atmosphere they
lead to shower fronts with smaller radius of curvature. The results of these two measurements [10]
allow then to set the bounds on the photon fraction displayedin figure 6, which for instance exclude
photon fractions larger than 2% forE > 10 EeV. These bounds already exclude many ‘top-down’
models for the production of ultra-high energy cosmic rays through decays of super heavy particles
or topological defects, since these would lead to significant photon fluxes (some predictions are
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Figure 6: Bounds on the allowed fraction of photons vs. the energy threshold.

shown in the figure), and hence the standard scenarios of ‘bottom-up’ acceleration in astrophysical
sources is reinforced. The present sensitivity is still insufficient to detect the photons that could be
produced if ultra-high energy cosmic rays are extragalactic protons that get attenuated by photo-
pion interactions with the CMB. The neutral pion decays would lead to photon fluxes somewhere
in the shaded region of the plot, which will start to be testedin a few years with the continuous
operation of the Auger Observatory.

Another important search is that for diffuse neutrino fluxes[11], such as those expected to
result from the decays of the charged pions produced in the attenuation of extragalactic protons
(cosmogenic neutrinos). Being weakly interacting, the neutrinos arriving near the vertical have a
small chance to interact in the atmosphere, but on the other hand, neutrinos arriving near the hori-
zon may have a first interaction not far from the detector, andhence produce horizontal showers
that are young (i.e. with significant electromagnetic component), unlike the horizontal showers
produced by hadrons that start very far away at the top of the atmosphere and hence have their
electromagnetic component completely attenuated and leadonly to very narrow pulses in the de-
tectors due to the surviving muon component. Another effective way to observe neutrino induced
showers is by looking at those produced by tau neutrinos coming from slightly below the horizon.
In this case, a charged current interaction in the rock produces a tau lepton that can travel several
km and eventually exit the ground and decay above the detector, producing an observable shower.
Since neutrino oscillations are expected to lead to an equaladmixture of the different flavors, even
in the case that the sources produce only muon and electron neutrinos by pion decays, tau neutrino
fluxes are also expected. These searches for upgoing showersrepresent actually the most sensitive
way to look for diffuse neutrinos with the Auger Observatory. The resulting bounds are displayed
in figure 7. They are particularly sensitive at EeV energies,which is just the energy range were
cosmogenic neutrinos are expected to peak. However, the present sensitivity is still above the most
optimistic predictions (shaded region in the plot) but someimprovements are expected to be ob-
tained with increased statistics. Observation of these diffuse neutrino fluxes would strongly favor
a proton composition at the highest energies, because heavynuclei lead to much smaller expected
neutrino fluxes since having smaller speeds they are below the threshold for pion production until
much higher energies.
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Figure 7: Neutrino bounds
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