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The channeling of the recoiling nucleus in crystalline detectors after a WIMP collision would

produce a larger scintillation or ionization signal in direct detection experiments than otherwise

expected. I present estimates of the importance of this effect in NaI, Si and Ge crystals, using

analytic models developed from the 1960’s onwards to describe channeling and blocking effects.
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Channeling and blocking in crystals refer to the orientation dependence of ion penetration in
crystals. “Channeling" occurs when ions incident upon a crystal along symmetry axes and planes
suffer a series of small-angle scatterings that maintain them in the open “channels" in between rows
or planes of lattice atoms and thus penetrate much further than non-channeled ions. Channeled ions
do not get close to lattice sites, where they would suffer a large-angle scattering which would take
them out of the channel. “Blocking" is the reduction of the flux of ions originating in lattice sites
along symmetry axes and planes due to the shadowing effect ofthe lattice atoms directly in front
of the emitting lattice site (see e.g. the review by D. Gemmell [1] and references therein).

Channeling and blocking effects in crystals are extensively used in crystallography, in mea-
surements of short nuclear lifetimes, in the production of polarized beams etc. Channeling must
be avoided in the implantation of B, P and As atoms in Si crystals to make circuits. The channel-
ing effect in NaI(Tl) crystals was first observed by Altman etal. [2] in 1973 who observed that
channelled ions produce more scintillation light because they loose practically all their energy via
electronic stopping rather than nuclear stopping. When ions recoiling after a collision with a WIMP
move along crystal axes and planes, they give all their energy to electrons, so the quenching factor
Q (the fraction of the energy deposited in a collision that goes into scintillation or ionization) is
Q≃ 1 instead of e.g.QI ≃ 0.09 andQNa ≃ 0.3 in NaI(Tl). The potential importance of this effect
for direct dark matter detection was first pointed out for NaI(Tl) by Drobyshevski in 2007 and soon
after by the DAMA collaboration [3]. This last paper gave an estimate of the channeling fraction
of recoiling ions as function of the energy, in which the fraction grew with decreasing energy to
be≃ 1 close to 1 keV. With this channeling fraction, the region oflight WIMPs compatible with
producing an annual modulation as measured by the DAMA collaboration shifted considerably to
lower cross sections, by about one order of magnitude (see e.g. [4]). Channeling could also produce
a novel dark matter signature. Since the WIMP wind comes preferentially from the direction fixed
to the galaxy towards which the Sun moves, Earth’s daily rotation makes this direction change with
respect to the crystal, which could produce a daily modulation in the measured energy (equivalent
to a modulation of the quenching factor). As first pointed outby Avignone, Creswick, Nussinov in
2008 [5], this modulation depends on the orientation of the crystal with respect to the galaxy, thus
it would be a background free dark matter signature.

Our calculations [6] of the fraction of recoils that are channeled as function of recoil energy
and direction use classical analytic models which started to be developed in the 60’s and 70’s,
soon after channeling was discovered, for ions of energy MeVand higher. We use in particular
Lindhard’s model [7], supplemented by the planar channel models of Morgan and Van Vliet [8]
and the 1995-1996 work of G. Hobler [9] on low energy channeling (applied to ion implantation
in Si). In these models the rows and planes of lattice atoms are replaced by continuum strings
and planes in which the screened Thomas-Fermi potential is averaged over a direction parallel to a
row or plane of lattice atoms to find the continuous potentialU (see Fig. 1.a for examples ofU ).
The appearance of continuous strings or planes can be understood as the overlap of the “Coulomb
shadows" of individual atoms in a lattice row or plane behindthe direction of arrival of a parallel
beam of positive ions, when the beam arrives at a small enoughangle, smaller than a critical angle
ψc. Then, the individual shadows overlap forming a string or plane of thicknessρc within which
the scattered ions do not penetrate (see e.g. Fig. 4.6 of Ref.[10]). We included just one string or
plane, which is a good approximation except whenρc approaches the radius of the channel.
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Figure 1: a. (left) Continuum potential for a string (black) and plane(green) for a Si ion propagating in Si
as function of the distance perpendicular to the string or plane. b. (right) Oberved (green) and predicted with
c= 2 (black) channeling angles for B ions propagating in Si at room T.

Lindhard proved that for channeled ions the “transverse energy" Eperp = Mv2
perp/2+U ≃

Eφ2 +U is conserved, whereM, E = Mv2/2 are the mass and kinetic energy of the propagat-
ing ion, vperp= vsinφ ≃ vφ is the component of the velocity perpendicular to the stringor plane
andU is the continuum axial or planar potential at the position ofthe ion. Thus, for a particu-
lar Eperp (determined by the recoil energyE, initial recoil angleφi and initial potential andUi),
a channeled propagating ion does not approach the string or plane closer than a minimum dis-
tanceρmin (for which vperp = 0) and far away from the string or plane, close to the middle of
the channel, the ion moves on a trajectory forming an angleψ with the string or plane, given by
Eperp= Eφ2

i +Ui =U(ρmin) = Eψ2+Umiddle. Channeling occurs whenρmin > ρc, which amounts
to ψ =

√

[U(ρmin)−Umiddle)]/E ≤ ψc =
√

[U(ρc)−Umiddle)]/E.

All the difficulty of this approach resides in calculatingρc. Including temperature (T) effects,

the critical distance can be approximated byρc(E,T) =
√

ρ2
c (E)+ [c u1(T)]

2, whereρc(E) is the
critical distance for a perfectly rigid lattice (which decreases asE increases, as shown in Fig. 2.a),
u1(T) is the 1-dimensional amplitude of thermal fluctuations (we used the Debye model) which
increases withT, andc is a dimensionless number which (for several crystals and propagating
ions, different than the ones we study) was found through data and simulations to be 1< c< 2. At
large enough energiesρc(E,T) ≃ c u1(T) and thus asT increases the strings are planes become
thicker, the channels narrower andψc smaller (see Fig. 2). Using this formalism withc = 2 we
could reproduce data on channeling angles of B and P ions in Simeasured at roomT provided by
Hobler [9] (shown in green for B in Fig.1.b). As shown in Figs.1.b and 2.b the critical angleψc

increases with decreasing energy until the critical distance for channelingρc approaches the radius
of the channel, at which pointψc goes zero (see Fig. 1.a). At still lower energies,ρc should be
larger than the radius of the channel, what indicates that channeling is not possible (thusψc = 0).

The channeling of an ion depends not only on the initial angleits trajectory makes with a
string or plane, but also on its initial position. The DAMA collaboration [3] calculated the chan-
neling fraction for ions starting their motion close to the middle of the channel, where channeling
happens ifψ < ψc. However this is not the case in dark matter detectors, sincethe recoiling
ions start their motion at or close to their original latticesites (and leave those sites empty). For

3



P
o
S
(
I
D
M
2
0
1
0
)
0
1
6

Ion-Channeling in Direct Dark Matter Crystalline Detectors Graciela GELMINI

dach � 2

2 u1

40 mK
293 K

600 °C900 °C

Static lattice

1 10 100 1000 104
0.002

0.005

0.01

0.02

0.05

0.1

0.2

E HkeVL

r c
Hn

m
L

<100> axial channel, Si ions, c=2

Static lattice

900 °C

600 °C

293 K

40 mK

1 10 100 1000 104

0.5

1.

2.

5.

E HkeVL

Ψ
c
Hd

eg
L

<100> axial channel, Si ions, c=2

Figure 2: a. (left) Critical channeling distancerc and b. (right) critical channeling anglesψc for a Si ion
propagating in the<100> channel of a Si crystal, for a static lattice (dashed green) and T corrected (solid
black lines) at differentT with c= 2 (2u1 shown in red and the radius of the channel in solid green)
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Figure 3: Channeling fractions for a Si ions ejected from lattice sites in a Si crystal as function of the ion
energy for different temperaturesT andT effects computed with a. (left)c= 1 and b. (right)c= 2.

900 °C

600 °C

293 K

40 mK

1 10 100 1000 104 105
1´10-4
2´10-4

5´10-4
0.001
0.002

0.005
0.01

E HkeVL

F
ra

ct
io

n

Ge ions,c1=c2=1

900 °C

600 °C

293 K

40 mK

1 10 100 1000 104 105
0.0001

0.001

0.0005

0.0002
0.0003

0.00015

0.0015

0.0007

E HkeVL

F
ra

ct
io

n

Ge ions,c1=c2=2

Figure 4: Same as Fig. 3 but for Ge ions ejected from lattice sites in a Gecrystal.
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Figure 5: a. (left) Upper bounds to the channeling fraction of Na and I ions ejected from lattice sites in a NaI
crystal for several temperatures (withc= 1). b. (right) Using the T= 293 K curve as the channeling fraction
in the DAMA detectors the region of compatibility with the DAMA signal for WIMPs with spin-independent
interaction is the same with and without channeling at less than 7σ [12].

recoiling ions, blocking effects (neglected in the DAMA calculation) are important. In fact in a
perfect lattice no recoiling ion would be channeled (because of what Lindhard called the “rule of
reversibility"), but due to lattice vibrations the collision with a WIMP may happen while an atom
is displaced with respect to the string or plane where it belongs. If it is initially far enough it
may be channeled. For an axial channel, the probability distribution function of the perpendic-
ular distance to the row of the colliding atom due to thermal vibrations can be represented by a
Gaussian,g(ρ) = (ρ/u2

1)e
(−ρ2/2u2

1). Thus, in our model the probability that an ion is channeled is
given by the fraction of nuclei which can be found at a distance larger than a minimum distance
ρi,min (determined byρc and the initial recoil angle) from the string at the moment ofcollision,

PCh =
∫ ∞

ρi,min
drg(ρ) = e(−ρ2

i,min/2u2
1). Notice that any uncertainty inρc is exponentially enhanced in

the channeling fraction. Similar equations apply to planarchannels. To obtain the total geometrical
channeling fraction, we average the channeling probability over initial recoil directions, assuming
they are isotropically distributed. We do it numerically byperforming a Riemann sum once the
sphere of directions has been divided using a Hierarchical Equal Area iso-Latitude Pixelization
(HEALPix) [11] (a novel use for HEALPix).

The channeling fractions we obtain are stronglyT dependent (see e.g. Figs. 2,3 and 4.a).
As T increases the probability of finding atoms far from their equilibrium lattice sites increases,
which increases the channeling fractions, but the criticaldistancesρc become larger (≃ cu1 at large
enough energies) which decreases the channeling fractions. The fractions are smaller for larger
values ofc, as can be seen for Si and Ge in Fig. 3 and 4. We expect the fractions to be in between
those forc= 1 and those forc= 2. Moreover, we have not included any dechanneling effects due
to impurities or dopants. So the fractions we produced must be considered upper bounds. This
is even more so for NaI and CsI, for which we have not found dataequivalent to those provided
by Hobler for Si (useful for Ge too, which has the same structure of Si) so we can provide up-
per bounds on the channeling fractions instead of estimates, even forgetting about dechanneling
effects. Upper bounds on channeling fractions in NaI are shown in Fig. 4.a forc= 1 and several
temperatures. Using the fractions in Fig. 5.a corresponding to the temperature of the DAMA/NaI
and the DAMA/LIBRA experiments, T= 293 K, the difference in the WIMP region corresponding
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to the DAMA annual modulation signal differs only at 7σ is channeling is included or not included
(as can be seen in Fig. 5.b taken from Ref. [12]).

To conclude, the effect of blocking is important to understand the channeling of ions ejected
from lattice sites by interactions with dark matter particles. Analytic models give good qualita-
tive results but channeling data and or simulations are necessary to get reliable quantitative results.
Finally, the daily modulation of the scintillation or ionization in crystalline detectors due to chan-
neling, a potentially background free dark matter signal, deserves further investigation.
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