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sNN � 62 and 200 GeV. The azimuth quadrupole component is distin-

guished from η-localized same-side correlations by taking advantage of the η dependence. The
quadrupole component is related to conventional v2 measures. Both pt-integral and pt-differential
results are presented as functions of Au-Au centrality. We observe simple universal energy and
centrality trends for the pt-integral quadrupole component. pt -differential results are constructed
using v2

2 marginal distributions on pt . These results can be transformed to reveal quadrupole
pt spectra that are nearly independent of centrality. A parametrization of the pt-differential
quadrupole shows a simple pt dependence that can be factorized from the centrality and colli-
sion energy dependence above 0.75 GeV/c.
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1. Introduction

One of the major physics results of heavy ion collisions at RHIC energies has been the ob-
servation of a large azimuth anisotropy [1]. This phenomenon is typically described in terms
of hydrodynamics in which there is a pressure-driven expansion of the collision region in non-
central collisions [2]. Hydrodynamics describes both radial flow (a collective transverse velocity
of particles produced in the collision) and elliptic flow (the azimuth anisotropy produced from the
asymmetric shape of the original collision system).

Elliptic flow is typically thought to correspond to the measured quantity v2, defined by the
second Fourier component of the distribution of particles on azimuth with respect to the angle of
the reaction place of the colliding nuclei [3]. This definition works for theoretical calculations in
which the reaction plane is known. However, in experimental measurements the reaction plane can
only be estimated by particles in the event, so correlations must be used.

Two-particle correlations could reliably measure the phenomenon of elliptic flow if there were
no other physical contributions to the correlation signal [4]. In practice there are several sources of
correlations such as (mini)jets, resonances, and HBT effects. There are two major approaches for
reducing so-called “nonflow” effects. One is to use the pseudorapidity separation between particles
and the other is to make a many-particle measurement.

In this analysis we distinguish the azimuth quadrupole from other sources of correlation ge-
ometrically by using the shape of the correlations on pseudorapidity as well as azimuth. Full
two-dimensional histograms of the two-particle correlation space are constructed and fitted with
model functions to distinguish different contributions.

2. Angular Correlations

Minimum-bias angular correlations are constructed by considering all possible pairs of parti-
cles in an event (minus self-pairs). The primary measurement variables of the particles we observe
are their azimuth angle φ , pseudorapidity η , and transverse momentum pt . In two-particle correla-
tions these three variables for each particle define a six-dimensional space � φ1 � η1 � pt1 � φ2 � η2 � pt2 � .
This space is difficult to work with, so cuts and projections are used to simplify the analysis.

In this analysis the first cut selects a momentum range from the � pt1 � pt2 � space. One possible
choice is to accept the entire momentum range, which yields what we refer to as a pt -integrated cor-
relation. However, if we want to study the pt dependence of correlations there are several choices,
since we are dealing with a two-dimensional pt space. The momentum cuts we have chosen are
marginal distributions in which we restrict the momentum range of one of the particles and allow
the other particle to have any momentum value. Because of the inherent diagonal symmetry in the� pt1 � pt2 � space this produces cross-shaped cuts as seen in Fig. 1 (left panel).

It is convenient to use transverse rapidity yt instead of transverse momentum pt . yt is a rela-
tivistic momentum variable defined as

yt � ln 	
� pt � mt �� m0 ��� (2.1)

yt is analogous to the usual longitudinal rapidity variable but is defined in the transverse direction
with yz � 0. It is useful for studying a large range of momentum values. The definition of yt requires
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Figure 1: Left Panel: Two example of marginal cuts in yt � yt space. Right Panel: The Fourier decomposi-
tion of a periodic array of Gaussians as a function of the Gaussian width.

a mass, but in practice we usually analyze unidentified particles so the pion mass is assumed. When
used in this fashion yt is a logarithmic transformation of pt that is very close to ln � pt � but has a
well-defined zero.

The correlation measure is constructed from pair densities of sibling pairs (pairs of parti-
cles taken from the same event) and mixed pairs (pairs of particles taken from similar but dis-
tinct events). Mixed pairs serve as a reference that can remove detector artifacts in the measure
∆ρ � ρref � � ρsib � ρref �� ρref, with the mixed-pair reference normalized to the total number of the
sibling pairs. This is a per-pair measure. At times a per-particle measure such as ∆ρ ��� ρref is
more useful since a per-pair measure includes a trivial 1 � nch trend.

This approach can be contrasted with the ZYAM (zero yield at minimum) method which is
applicable only for narrow, well-separated peaks [5]. The difference is in the normalization of
mixed pairs to sibling pairs. The ZYAM method imposes the criterion that the minimum of the
correlation histogram should have value zero and adjusts the normalization in order to achieve that.
But if the physics signal contains distinct but overlapping peaks then the true correlation value of
the minimum of the histogram should be nonzero. This normalization also affects the amplitudes
of the peaks.

This analysis is based on 14.5 million Au-Au collisions with center-of-mass energy 200 GeV
and 6.7 million collisions at 62 GeV. Tracks are observed in the STAR TPC with a minimum pt of
0 � 15 GeV � c and no upper pt cut. The TPC has 2π coverage in azimuth and this analysis uses tracks
in � 1 � η � 1. The analysis also divides the minimum-bias events into eleven different centrality
classes as defined in Ref. [6], with nine � 10% bins from 100% to 10% and the most-central 10%
divided into two 5% bins.

It is useful to compare these correlations to the standard event-plane method for measuring v2
[3], defined by

vm � EP � � vobs
m�

cos � m � ψm � ψr ��� � (2.2)

where vobs
m � �

cos � m � φ � ψm ��� , ψr is the true reaction plane angle, ψm is the estimated event-plane
angle, and φ is the azimuth angle of a particle in the event. The denominator of this expression is
known as the event-plane resolution. ψm is measured as the direction of the corresponding Q vector�

Qm � n

∑
i � 1

�
u � mφi � � Qm

�
u � mψm ��� (2.3)
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Here
�
u are unit vectors and Qm is the magnitude of the Q vector. The two-particle correlation

density Vm can be defined by the expression

V 2
m � n

∑
i � 1

n  1

∑
j !� i

�
u � mφi � �u � mφ j � � n2v2

m � 2 � � (2.4)

where n is the event multiplicity. The second part of the above expression introduces the rela-
tionship to the two-particle cumulant method. The Vm here are strictly Fourier components of the
total two-particle azimuth density and include “nonflow” effects that might be better described by
non-Fourier terms.

If we use Eq. 2.3 in Eq. 2.4 then we arrive at the following relationship:

Vm � n

"
1
n ∑

i � 1
n
�
u � mφi �$#&% �u � mψm � Qm

Vm
� (2.5)

In Ref. [4] an expression for the event-plane resolution was derived:�
cos 'm � ψm � ψr �)(*� �,+ n � 1

n
Vm

Qm
� (2.6)

Inserting this into Eq. 2.5 gives:

Vm � n
vobs

m�
cos � m � ψm � ψr ��� � nvm � EP � � (2.7)

Thus we find that the event-plane method of measuring v2, while often presented using different
language, is essentially a type of two-particle correlation.

3. pt–integrated Quadrupole

pt -integrated quadrupole results have been presented previously in [7] but are still important
for understanding the pt -differential results. The systematics they establish provide a basis for fully
understanding the correlation system.

The quadrupole component is obtained by doing a free fit of two-dimensional (2D) � η∆ � φ∆ �
histograms. It has been found that these histograms can be well-described at all centralities by a
remarkably simple fit model which works even in proton-proton collisions. The model function
includes: a same-side 2D Gaussian on � η∆ � φ∆ � , and η∆-independent away-side dipole cos � φ∆ � π � ,
an η∆-independent quadrupole cos � 2φ∆ � , a φ∆-independent 1D Gaussian on η∆, a narrow same-side
2D exponential on � η∆ � φ∆ � , and a constant normalization offset. The model function is expressed
as

F � AD cos � φ∆ � π � � AQ cos � 2φ∆ � � A0e  1
2 - η∆

σ0 . 2 � A1e
 1

2 /0 132 φ∆
σφ∆ 4 2 576

η∆
ση∆ 8 2 9 :;

� A2e
 /0 1 2 φ∆

wφ∆ 4 2 5 6
η∆

wη∆ 8 2 9 :; 1 < 2 � A3 � (3.1)
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Figure 2: First Two Panels: pt -integrated quadrupole results in terms of ∆ρ =?> ρref and v2. The solid
circles and solid triangles are quadrupole results from 2D fitting at 200 and 62 GeV respectively. The open
circles and open squares are v2 @ 2 A and v2 @ 4 A results for 200 GeV collisions [10]. The upside-down solid
triangles are 17 GeV results from NA49 [11]. The open triangles are from projecting the 2D correlations
to just φ∆ and fitting with only Fourier components. The dashed curves are from our parametrization of the
data. Third Panel: Calculated optical and participant eccentricities as a function of centrality. Right Panel:
Energy and centrality dependence of the quadrupole using the optical eccentricity for 200 and 62 GeV data
from this study and 17 GeV results from NA49 [11].

The quadrupole term is conventionally interpreted as “elliptic flow” [4]. The other important
structures in this study are the 2D same-side peak and corresponding away-side ridge, described
by a 2D Gaussian and the away-side dipole respectively. The same-side 2D peak can contain
contributions from HBT and resonance decays, but is likely dominated by minijets [8, 9]. The
sharp 2D exponential peak mainly describes electron pair production and is not of interest in this
study. The 1D Gaussian on η∆ is only present in more-peripheral collisions and is believed to be
related to participant nucleon fragmentation. Given that it has no φ∆ dependence it is orthogonal to
the quadrupole term which is only φ∆-dependent.

A more complete description of the away-side structure would be with a periodic array of
Gaussian peaks centered at π , 3π , etc. The dipole description applies in the limit where the widths
of the Gaussian peaks become large. Fig. 1 (right panel) shows the calculated Fourier coefficients
of such an array of Gaussians as a function of the Gaussian width. In the pt -integrated results the
dipole appears to be a good description for all centralities.

The quadrupole component in ∆ρ �
� ρref is related to the usual v2 measure by [4]

AQ � 2
∆ρ ' 2 (� ρref

� 2ρ0v2
2 � b ��� (3.2)

Extracted quadrupole parameters are shown in Fig. 2 (first two panels) in terms of both ∆ρ � � ρref
and v2 amplitudes and compared to published STAR v2 � 2 � and v2 � 4 � [10] data and 17 GeV event-
plane results from NA49 [11].

In order to better understand the energy and centrality dependence of the azimuth quadrupole
it is useful to understand the geometry of the initial collision system which is usually described in
terms of an eccentricity [12]

ε � �
y � 2 � �

x � 2�
y � 2 � �

x � 2 � (3.3)
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where x and y are coordinates in the plane perpendicular to the beam axis with x being in the
reaction plane. Eccentricity is not directly measurable. It is typically estimated based on the
centrality of the collision using a Glauber model. The optical model of the eccentricity used here
is based on a continuous transverse density profile with a Woods-Saxon potential as in Ref. [13].

In Ref. [7] we show a parametrization of the optical eccentricity for RHIC energies

εopt � nbin � � 1
5 � 68

log10 B 3nbin
2 C 0 D 96 % log10 B 1136

nbin C 0 D 81 � (3.4)

This is plotted as the solid curve in Fig. 2 (third panel). The dash-dotted curve shows an exam-
ple of a participant nucleon calculation which is preferred by some to describe conjectured “flow
fluctuations” [14]. Participant nucleon models give larger eccentricity values at all centralities but
especially in the very peripheral and central cases.

In the quadrupole data in Fig. 2 (first panel) we note that the data at different energies can be
described by a common shape simply by varying the amplitude. The energy dependence is found
to be proportional to log �FE sNN � 13 GeV � . We then introduce the energy scaling factor

R � E sNN � � log � E sNN � 13 GeV �� log � 200 � 13 ��� (3.5)

The complete set of quadrupole data can then be described by

ρ0 � b � v2
2 � 2D �?� b � � 0 � 0045R �)E sNN � ε2 � b � nbin � b ��� (3.6)

In Fig. 2 (fourth panel) we confirm this by observing the linear trend when plotting � 1 � ε 2 � ∆ρ ' 2 (*� � ρre f
vs. R � E sNN � nbin � b � . The parametrization of the quadrupole is very useful because it factorizes the
energy and centrality dependence.

We can express the pt -integrated v2 at centrality b in terms of the pt -differential v2 by

v2 � b � � 1
ρ0 � b ��G d pt pt ρ0 � pt � b � v2 � pt � b ��� (3.7)

where ρ0 � pt � b � is the single-particle pt -spectrum [15]. Because the spectrum falls off exponentially
at larger pt , pt -integrated v2 numbers are heavily weighted toward lower-pt particles and have
virtually no sensitivity to v2 above about 0 � 5 GeV/c. pt -integrated v2 results should not be used to
conclude anything about the behavior of v2 at higher pt .

4. pt–differential Quadrupole

The yt dependence of angular correlations is studied by making cuts on yt and examining
the 2D histograms in restricted yt intervals. For two-particle correlations it is possible to restrict
the transverse momentum of each particle independently, so the yt -dependence is inherently two-
dimensional. While the two-dimensional dependence is interesting in its own right, we construct a
one-dimensional function on yt to compare to published v2 � pt � data.

We have made nine marginal yt cuts—as described in Sec. 2—for each centrality class of
events for both 62 and 200 GeV collisions. The first bin includes particles from 0.15 GeV—the
lowest pt we can measure at STAR—to a yt value of 1.4. Above that there are 7 bins evenly spaced
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Figure 3: Example of the yt evolution of correlation structures for 62 GeV 40-50% central collisions. The
plots correspond to yt bins of 1 H 4 I yt I 1 H 8, 3 H 0 I yt I 3 H 4, and 3 H 8 I yt I 4 H 2.
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Figure 4: Example of the yt evolution of correlation structures for 200 GeV 40-50% central collisions. The
plots correspond to yt bins of 1 H 4 I yt I 1 H 8, 3 H 0 I yt I 3 H 4, and 3 H 8 I yt I 4 H 2.

in yt with a width of 0.4 units of transverse rapidity. The final bin includes all particles greater than
yt � 4 � 2. In pt these bin edges correspond to 0.27 GeV, 0.41 GeV, 0.62 GeV, 0.94 GeV, 1.4 GeV,
2.1 GeV, 3.1 GeV, and 4.7 GeV.

In Figs. 3 and 4 we show example histograms for 62 GeV and 200 GeV collisions respectively
at 40-50% centrality. All of the pt -dependent correlations are measured using ∆ρ � ρref which
simplifies the conversion to v2.

The fit procedure is similar to that used in the pt -integrated results with one major exception:
We no longer attempt to model the sharp exponential peak. Instead we simply exclude bins near
the angular origin from the fit. The excluded bins are at η∆ � 0 and φ∆ � 0 �KJ π � 12 and at φ∆ � 0
and η∆ � J 0 � 08 �KJ 0 � 16. This has the effect of making the fits more stable over a wide pt range but
it can be a problem for the most peripheral bins where the width of the exponential approaches that
of the same-side 2D Gaussian.

The major fit parameters are shown in Fig. 5 for 62 GeV collisions and in Fig. 6 for 200 GeV
collisions for several centralities. The Gaussian amplitudes and azimuth widths follow expected
trends for both energies. However, the widths on pseudorapidity seem to be largely independent of
yt over a large range.

Quadrupole amplitudes in ∆ρ � ρref can be converted into v2 values by the simple relationship,
2v2

2 � 2D � � ∆ρ ' 2 (*� ρref. However, the marginal distribution produces data of the form 2v2 � pt � b � v2 � b � ,
not 2v2

2 � pt � b � , so the fit amplitude must be divided by pt -integrated v2 � b � .
In our fit model the non-quadrupole term with the largest contribution to the second Fourier

component on azimuth is the same-side 2D Gaussian peak. We can calculate the contribution to
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Figure 5: Fit parameters for 62 GeV collisions: Same-side peak amplitude, width in eta, width in phi,
and quadrupole amplitude as a function of yt for 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, and 60-70%
central collisions. Error bars are for fitting errors only.
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Figure 6: Fit parameters for 200 GeV collisions: Same-side peak amplitude, width in eta, width in phi,
and quadrupole amplitude as a function of yt for 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, and 60-70%
central collisions. Error bars are for fitting errors only.
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Figure 7: Comparison of quadrupole (closed circles) and the second Fourier component of the 2D same-
side Gaussian (closed upside-down triangles) to v2 L EP M results (open circles) [16] for 30-40%, 5-10%,
and 0-5% central collisions. The dark solid curve in the first two panels is the sum of the quadrupole and
same-side peak terms.

the second Fourier component of a 2D Gaussian of given amplitude and widths, which we know
for the same-side peak from our fit parameters. This gives us a direct measure of the so-called
“nonflow” contribution to v2, as shown in Fig. 7 for 30-40%, 5-10%, and 0-5% central collisions.
We see that the 2D Gaussian peak dominates in 0-5% central collisions and that the “nonflow” (jet
contribution) is strongly centrality and pt -dependent.
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5. Quadrupole Spectrum

Consider the case of minimum-bias identified particles results from STAR [17]. In Ref. [18] it
was shown that by plotting v2 � pt on proper yt for identified hadron species the particles appear to
come from a single boosted source. This is reproduced in Fig. 8 (left panel). This is most evident
for the more massive particles. Since the pion mass is of the same order as the lowest pt we can
measure in STAR there are few observed pions in the necessary pt range to see this boost. In Fig. 8
(middle panel) we plot just the Lambdas, which makes the boost more explicit.

Now consider the centrality-dependent (denoted by b) production of an azimuth quadrupole
term from a general boosted source. First make the general assumption that the single-particle
density on yt and φ can be decomposed into azimuth-dependent and azimuth-independent terms:

ρ � yt � φ � b � � ρ0 � yt � b � � ρ2 � yt � φ � b ��� (5.1)

At this point we do not make any assumptions about the nature of the azimuth dependence. Then
apply the continuum definition of v2:

v2 � yt � b � � 1
2π N 2π

0 dφρ � yt � φ � b � cos ' 2 � φ � ψR �)(
1

2π N 2π
0 dφρ � yt � φ � b � � 1

2π N 2π
0 dφρ2 � yt � φ � b � cos ' 2 � φ � ψR �)(

ρ0 � yt � b � � V2
ρ0 � yt � b � � (5.2)

Only the azimuth-dependent term contributes to the numerator, and the denominator is approxi-
mately the single-particle spectrum [18]. What we want to study is actually the numerator of this
expression, which we denote by V2.

To calculate V2 we need to introduce a boost model. A general boost in nuclear collisions
should have both monopole (radial flow, Hubble expansion) and quadrupole terms, which is easily
expressed in yt :

∆yt � φ � � ∆yt0 � ∆yt2 cos � 2 ' φ � ψR (*��� (5.3)

with ∆yt2 O ∆yt0 a necessary condition for a positive-definite boost. Using a simple blast-wave
model with a Maxwell-Boltzmann distribution for a locally-thermalized source the boosted spec-
trum’s azimuth-dependent term then has the form [18]:

ρ2 � yt � φ � � A2yt
exp � � µ2 ' cosh � yt � ∆yt � φ �� � 1 ( � � (5.4)

where µ2 � m0 � T2. If we insert our boost model into Eq. 5.4 and factor the φ -dependent terms of
ρ2 into the form ρ2 � yt � φ � � ρ2 � yt ��P F1 � yt � φ �QP F2 � yt � φ � where

F1 � yt � φ � � exp � m Rt ' cosh � ∆yt2 cos ' 2 � φ � ψr �)(*� � 1 (*� T2 �
F2 � yt � φ � � exp � p Rt ' sinh � ∆yt2 cos ' 2 � φ � ψr �)(*�� T2 � (5.5)

then we identify ρ2 � yt � as the azimuth-integrated quadrupole spectrum. Inserting this into the
numerator of Eq. 5.2 and evaluating the integral yields

V2 � yt � b � � pt ∆yt2 � b �
2T2

ρ2 � yt � b ��� (5.6)
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Figure 8: Left panel: Identified v2 S pt T = pt for pions (closed circles), kaons (open triangles), and protons
(open circles) for minimum-bias collisions [17] vs. proper yt for the particle species. Middle panel: A
magnification of the proton results. Right panel: The quadrupole spectrum for a range of centralities at
200 GeV.

Finally, we want to isolate ρ2 � yt � b � by taking the unit-integral ratio of measured quantities:

Q � yt � b � � V2 � yt � b �� pt

V2 � b � � 1 � pt � � ρ2 � yt � b �
ρ2 � b � � (5.7)

The parameters from the blast-wave model present in Eq. 5.6 then drop out in the ratio and Q � yt � b � ,
shown in Fig. 8 (right panel), directly relates measured parameters to the quadrupole spectrum for
5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, and 60-70% central 200 GeV collisions.

We observe approximate centrality-independence of Q � yt � b � in Fig. 8 (right panel). We con-
jecture that there is a centrality-independent Q0 � yt � which is well-described by a boosted Lévy
distribution with parameters T2 � 0 � 09 GeV, n2 � 13 � 8, and ∆yt0 � 0 � 58 (dashed curve), though
there are significant deviations for the more-central events at low pt . This boost is the same that
was observed in the case of minimum-bias identified hadrons in Fig. 8 (left and middle panels).

6. Quadrupole Parametrization

A detailed study of the systematics of the pt -dependent quadrupole is possible. First, consider
rearranging the definition of Q in Eq. 5.7 and use the definition of V2 from Eq. 5.2 to get

v2 � 2D �?� pt � b � �VU 1
pt W pt v2 � 2D �?� b �7X ρ0 � b � Q0 � pt �

ρ0 � pt � b �ZY � (6.1)

The quantity ρ0 � b � Q0 � pt �� ρ0 � pt � b � has a pt dependence described by the ratio of a Lévy distribu-
tion to the single-particle spectrum. This is observed to be exponential for larger values of pt .

We can then construct a new parametrization of the form

v2 � 2D �?� pt � b � � U 1
pt W pt v2 � 2D �?� b � exp � � pt � 4 �QP f � pt � b ��� (6.2)

where f � pt � b � is a dimensionless factor needed to describe deviations from the exponential form
at low-pt . It can be fit to the data with the form

f � pt � b � � 1 � C � b � ' erf � yt � 1 � 2 � � erf � 1 � 8 � 1 � 2 �)([� (6.3)
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where C � b � � 0 � 12 � � ν � 3 � 4 �� 5 � '\� ν � 3 � 4 �� 2 ( 5. This parametrization provides a more accurate
description of the quadrupole term over a wider range of pt and centrality than the Lévy distri-
bution. The factor f � pt � b � is approximately 1 above about 0 � 75 GeV/c. Above that point the pt

dependence of the quadrupole is entirely described by the factor pt exp � � pt � 4 � . This leads to a
factorization of the pt and centrality dependence of v2 � pt � b � for these higher pts.

This factorization can be combined with the factorization of collision energy and centrality
dependence of the pt -integrated quadrupole described in Sec. 3 for a complete description of the
azimuth quadrupole component, at least at higher pt . This implies that there is very simple under-
lying behavior of the azimuth quadrupole.

7. Conclusions

Two-particle correlation histograms on azimuth and pseudorapidity have been constructed for
a wide range of centrality and momentum conditions. These histograms can be fit to study different
aspects of the physical system. The quadrupole term is closely related to the standard definition of
v2 but is isolated from η-dependent “nonflow” effects.

Studies of the pt -integrated quadrupole [7] have revealed simple trends on collision energy
and centrality. The dependence on collisions energy and centrality can be factorized to produce a
very accurate description of pt -integrated data.

We construct pt -dependent histograms using marginal distributions. Published event-plane
v2 � pt � b � data [16] are accurately described by the sum of the quadrupole and 2D Gaussian fit
components. The pt -dependent quadrupole component is used to construct a boosted quadrupole
spectrum. The quadrupole spectrum is approximately centrality-independent and is well described
by a fixed boosted Lévy distribution. An accurate parametrization of the pt -differential quadrupole
exhibits simple scaling above 0 � 75 GeV/c.

Quadrupole systematics reveal a system with remarkably simple scaling behavior and a pos-
sible factorization of the collision energy, centrality, and pt dependence. This seems contrary to
typical hydrodynamic expectations in nuclear collisions.
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