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The MeerKAT UltraDeep HI Survey aims to observe the 21 cm emission line of neutral hydrogen

gas out to a redshift of z=1 and beyond. From both direct detections and stacked signal, we

will address the HI mass function, the cosmic neutral gas density of the Universe (ΩHI) and

their evolution over cosmic times, as well as galaxy evolution via e.g., the Tully-Fisher relation,

the relation between HI mass and Hubble Type or stellar mass, and the Schmidt-Kennicutt star-

formation law. We propose to observe two fields, the COSMOS and Chandra Deep Field South

(CDF-S) for 1000 hours each, adding an additional 4000 hoursto one of these fields in 2015 when

the full instantaneous bandwidth of MeerKAT (0.58-2.5 GHz)will be realised.
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Ultradeep HI observations with MeerKAT

The MeerKAT radio telescope (Karoo Array Telescope Jonas, 2007; de Blok et al., 2009;
Booth et al., 2009), a precursor instrument for the Square Kilometer Array (SKA, Carilli & Rawl-
ings, 2004) is currently under construction in the Karoo, South Africa The planned large bandwidth
and high sensitivity will make MeerKAT the ideal instrumentfor high-redshift HI observations un-
til SKA is built. The proposed MeerKAT Ultradeep HI Survey is designed to make optimum use
of MeerKAT at each construction phase, in combination with existing surveys and a dedicated
spectroscopic redshift survey with the Southern African Large Telescope.
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Figure 1: A three dimensional representation of the
Tier II datacube (5000 hours total). The field-of-view
widens with redshift (z) resulting in the characteristic
vuvuzela shape (D = 0.8◦ at z=0).
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Figure 2: The field-of-fiew of the MeerKAT (at z=0)
with those of the Large Synoptic Synthesis Telescope
(LSST), approximately that of MeerKAT at z∼1, and
the Hubble Space Telescope deep fields of GEMS
and GOODS on the CDF-S and COSMOS.

1. Observations: the Vuvuzela

The primary beam width of the 12m MeerKAT dishes increases with frequency and hence
with redshift. As a result, a single pointing observation will cover a wider field-of-view at higher
redshift, leading to a characteristic trumpet-like shape of the three-dimensional data volume, similar
to a “Vuvuzela”1. Figure 1 gives an indication of the number and distributionof well-detected
sources in the final 5000 hour combined observation.

We propose to do science with both direct detections and stacked spectra of objects. In the
latter case, galaxy HI spectra are shifted to the same reference frame using the known positions
and redshifts of these objects and then co-added (similar toVerheijen et al., 2007; Lah et al., 2007,
2009). Combined, the signal-to-noise can be increased to yield an average line strength and width
for these objects (Figure 4). Different science questions can be explored this way but an existing
spectroscopic redshift database is essential for successful stacking analysis.

The observational strategy is dictated by the proposed science case and the roll-out of the
MeerKAT construction (Table 1), notably the expansion of available bandwidth after 2015. The
choice of fields is guided predominantly by the availabilityof spectroscopic redshifts as well

1The now well-known trumpet-like instrument used by soccer fans at the 2010 World Cup.
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Ultradeep HI observations with MeerKAT

as high-quality multi-wavelength data (Figure 6). Becauseof the much larger field-of-view of
MeerKAT compared to other wavelength deep surveys, these observations are effectively an HI
component to a wealth of multi-wavelength observations at the center, surrounded by a blind, ul-
tradeep HI survey (Figure 2).
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Figure 3: The 5σ detections for three different in-
tegration times as a function of redshift. Top panel
shows HImass versus redshift. The dashed line is
M∗

HI , our target for direct detections with the ultra-
deep observations (Tier II),
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Figure 4: Simulated stacking results (black lines)
for z=0.5 (top panel) and z=1.0 (bottom panel),
(∆z=0.1). The grey lines are reference spectra created
by stacking the input spectra after shifting them by
random redshifts. Galaxies were simulated accord-
ing to the OxfordS3 database (Obreschkow et al.,
2009b). For each redshift bin, the number of stacked
spectra corresponds approximately to the currently
available numbers of spectroscopic redshifts for the
zCOSMOS survey.

2. Science

Our Proposed key topic of investigation is galaxy evolutionover cosmic time. OUr headline
goals are therefore to measure the distriution of neutral hydrogen in galaxies, the HI mass function
(H IMF) and the cosmic neutral gas density (ΩHI) as a function of redshift. The HIMF has to date
only been determined for z=0 (Zwaan et al., 2005), while the relation betweenΩHI and redshift is
still ill constrained (Lah et al., 2007, 2009; Lah, 2010).
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Ultradeep HI observations with MeerKAT

Table 1: The goals of both observation phases of the MeerKAT Ultra-Deep HI Field.

Survey Phases Tier I Tier II
(2013-2015) (2016 - )

MeerKAT specs:
Bandwidth (GHz) 0.9 - 1.75 0.58 - 2.5
Redshift range (z) 0.0 - 0.58 0.0 - 1.4

Survey Parameters
Fields 2 1
Observing time (hours) 2× 1000 h +4000 h
Spectroscopic redshifts
currently available:
full redshift range ∼10000 ∼1000
highest redshift bin ∼1000 (at z=0.6) ∼ 500 (at z=1)

redshift limits for:
Direct Detection ofM∗

HI z=0.4 z=0.6
ΩHI using stacking z=0.6 z=1.0

With the Tier I observations, we expect to observe galaxies with masses down toM∗

HI out to
redshift z=0.4 and to measureΩHI , using stacking, out to z=0.6, the limit of the initial bandwidth.
In Tier II, we aim to observeM∗

HI galaxies out to z=0.6 and anticipate that stacking will allow us
to get an estimate ofΩHIout to z∼1, depending on size of the spectroscopic redshift catalog and
noise characteristics of the MeerKAT.

Our secondary goal is to explore the evolution of galaxies though the HI line, aside from the
H IMF. The relation between stellar mass, Hubble type or stellar bar, and the HI content of galaxies
as a function of look-back time can all be explored using bothdirect detections and stacked results.

The wealth of multi-wavelength data, as well as the radio continuum, provide us with an
estimate of the star-formation rate in these galaxies. The relation between gas-density and star-
formation, the Schmidt-Kennicutt law, would need additional information on the molecular gas
component in these galaxies. Atacama Large Millimetre Array (ALMA) observations would con-
stitute an ideal complement for individual detections. Star-formation changes dramatically from
z=1 to the present time (Madau et al., 1998; Hopkins, 2007), and the balance between and atomic
and molecular hydrogen is the missing component to understanding the physics of the forma-
tion and evolution of disks over this time (Obreschkow & Rawlings, 2009b,a; Obreschkow et al.,
2009a).

The Tully-Fischer relation between line width and luminosity (or stellar mass), can be explored
using directly detected galaxies (Figure 5). The slope, scatter and normalization of this relation all
depends on how rotationally supported disk galaxies assemble over the age of the Universe. We
expect to dramatically increase the accuracy and the kind ofT-F measurement at high redshift. The
benefit of an HI linewidth is that the atomic hydrogen disk probes the rotation curve well out to the
point at which it flattens; the dynamics probe the whole halo mass for these galaxies.
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Figure 5: The Tully-Fisher relation: line width (w50)
vs. stellar luminosity (mass), in three redshift intervals
for solid detections (peak s/n> 5σ ) for three integra-
tion times; 1000 (green), 2000 (red), and 5000 (black)
hours, based on theS3 SAX catalogue (Obreschkow
et al., 2009b). The MeerKAT UltraDeep HI obser-
vations will be able to study the slope, scatter, and
normalization of the Tully-Fisher relation over a wide
redshift range in great detail.

Additional science are the serendipitous detection of neutral gas in the cosmic web or “dark",
H I-only galaxies, an accurate count of OH megamasers, and a comparison between the distribution
of H I emission and absorption.

3. Complementary Data

The COSMOS and CDF-S fields have been observed across a broad range of wavelengths in
great detail2. Figure 6 shows the limiting depth of observations as a function of wavelength. Both
fields have ongoing spectroscopic redshift campaigns (Lilly et al., 2007; Balestra et al., 2010). Yet,
because the multi-wavelength data does not cover the entireMeerKAT field-of-view, additional
preparatory and follow-up observations will be necessary.Spectroscopic confirmation of the most
distant and massive HI lines will be paramount to removing contamination from OH megamasers.
The stacking results from the Tier II field will also improve with a larger accurate redshift catalogue.
CO observations by ALMA will be needed to provide the molecular component of these distant
galaxies.

Therefore, we anticipate a substantial observational effort (∼300 hours), with the Southern
African Large Telescope (SALT) to generate a redshift catalogue in advance of Tier II observa-
tions, as well as follow-up observations with ALMA, and a deep optical field with SkyMapper and
subsequently LSST.

4. Concluding remarks

The MeerKAT UltraDeep HI survey (MUDHI3), will revolutionalise HI astronomy. For the
very first time, the atomic gas component of distant galaxies, individual and per population, will be
accurately known since z∼1. The balance of MeerKAT capabilities, and the significant investment
in observing time, will make this deepest HI field a first instance of real SKA-type science before
the SKA is constructed.

2see e.g.,http://www.strw.leidenuniv.nl/~jarle/Surveys/DeepFields/index.html
3We are open to suggestions for a better acronym.
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Figure 6: The depth (5σ flux level or limiting magni-
tude) as a function of wavelength for five deep fields
accessible in the Southern Hemisphere. The COS-
MOS field stands out because of the low detection lim-
its in the far-infrared but the Herschel Space Observa-
tory is expected to obtain the deepest images on the
CDF-S (dashed red lines, three different tiers of ob-
servations, 1, 3 and 6). These new observations will
have better resolution, bringing them in line with the
MeerKAT resolution, as well as reach several mag-
nitudes deeper than the COSMOS FIR observations.
The Large Synoptic Survey Telescope will improve
limits in the optical SDSS filters by several magni-
tudes in its deep fields.
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