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1. Introduction

The ability to make and use tools is essential to mankind. It is necessary for our survival and
well-being. In fact, it is so important that anthropologists have claimed it to be a defining charac-
teristic of our species [1]. Surely, our high standing technological society would be unthinkable
were it not for the plethora of tools available for differentpurposes. Needless to say, the level of
Higgs physics would not be very advanced either.

The LHC experiments will hopefully become the ultimate tools to study charged Higgs bosons.
Until this is reality, we rely on theoretical tools to make predictions. Theorist’s tools are usually
computer codes which can be applied to calculate some interesting observables from model input.
Sometimes such tools are made available to the public, and weshould all feel grateous towards
those investing their time and careers in this effort. Goingfrom a private code to a public release
often means a deviation from the straight path to publication and instant fame. Instead it leads
into an endless cycle of bug fixing, improving user interfaces, writing manuals, and the occasional
glorious moment of releasing a new version on the web. If the relase is successful, people start
using the program, which leads to user feedback and the author can go back to fix the new bugs
and restart the cycle.

2. Toolbox for charged Higgs physics

Charged Higgs bosons—which we generically denote byH±—appear in any non-trivial exten-
sion of the Standard Model (SM) Higgs sector.1 This is interesting, since the presence of a charged
scalar is something fundamentally different; there is no SMparticle with the same quantum num-
bers. Doublets have a special position among the possible representations with renormalizable
couplings to the SM, since they do not upset the the tree-level relation ρ = MW/MZ cosθW ≃ 1.
Guided by the principle of parsimony, most studies are performed on models with two Higgs dou-
blets (2HDM). Another strong argument in favor of the the 2HDM is of course that this model is
the minimal Higgs sector compatible with supersymmetry (SUSY).

In this note we will only discuss tools which are publicly available. Since we are not aware
of any codes dealing with exotica (e.g. charged SU(2) singlets or Higgs triplet models), the scope
will be limited to the (SUSY and non-SUSY) 2HDM. There are many calculations concerning
charged Higgs bosons which tie into more general problems, such as computing the SUSY particle
spectrum at the electroweak scale from GUT-scale parameterinput. A full coverage clearly goes
beyond what can be discussed here. Instead we present a fairly complete list of tools for different
aspect of charged Higgs physics at the URL

http://www.desy.de/~stal/chtools

We aim to maintain this list and keep it up to date. If you have acode which is related to charged
Higgs boson physics, and it is not in this list, we are more than willing to add it. Please contact the
author directly.

1Non-trivial refering to the transformation properties of the new scalar field under SU(2)L. Also a scalar SU(2)
singlet carrying non-zero hypercharge leads to a charged Higgs boson, as realized in the Zee model [2].
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3. Focus on a few selected tools

3.1 FeynHiggs

A fundamental task in Higgs physics is to compute the masses and couplings of the Higgs
bosons. The leading program for doing these calculations inthe MSSM since many years is
FeynHiggs [3]. Two other alternatives areHDecay [4] and CPSuperH [5]. Among other
things,FeynHiggs gives the most accurate predicition for the charged Higgs massmH± available
(when not used as an input parameter). At tree-level,mH± is related to the CP-odd Higgs boson
massmA through

m2
H± = m2

A+m2
W. (3.1)

Unlike the corrections to the lightest CP-even Higgs massmh—which are often sizable—the mass
relation (3.1) typically receives only moderate corrections at the one-loop level. Nevertheless, these
corrections are important to achieve the precision required to compare with the ultimate sensitivity
of the LHC (and later the linear collider) [6]. In the Feynman-diagrammatic approach, the one-
loop correctedmH± is given by the pole of the charged Higgs propagator, obtained by solving the
equation

q2
−m2

H± +Σ(1)
H+H−(q2) = 0, (3.2)

whereΣH+H− is the charged Higgs self-energy. The calculations inFeynHiggs allow for both
real and complex parameters [7]. The latter is a prerequisite for treating CP violation in the Higgs
sector, something which is forbidden at tree-level in the MSSM, but which can be induced by
loop effects. For the neutral Higgs masses and mixing matrices, the full one-loop corrections are
included, and also the known two-loop corrections. At the two-loop level, corrections to Equa-
tion (3.1) proportional toO(αsy2

t ) are known in the approximation where the electroweak gauge
couplings are set tog= g′ = 0.

FeynHiggs also calculates the charged (and neutral) Higgs decay modes, including lead-
ing QCD corrections. Another important class of corrections which are included are the non-
holomorphic corrections to theb-quark Yukawa coupling (so-called∆b-corrections). These affect
the tbH± coupling and can lead to substantial suppression (or enhancement) of the branching ratio
for H±

→ tb and to the production cross section at hadron colliders [8].FeynHiggs contains
many additional features, such as the calculation of flavor observables, corrections tomW, g−2 for
the muon, and parametrized LHC cross sections for both neutral and charged Higgs production.

3.2 2HDMC – Two-Higgs-Doublet Model Calculator

The two-Higgs-doublet model calculator (2HDMC) [9] is a fairly new code, on which work was
initiated as a direct result of the cHarged 2008 workshop. Itcan be used to perform calculations in
a general (not necessarily supersymmetric) version of the 2HDM. This model is described by the
Higgs potential

V2HDM =m2
11Φ†

1Φ1+m2
22Φ†

2Φ2−
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Figure 1: Constraints onmH± in the general 2HDM from the obliqueT parameter. The shaded region is
allowed at 2σ. The CP-even Higgs masses aremh = 117 GeV,mH = 300 GeV, and sin2(β−α) = 1.

with two identical scalar doubletsΦ1, Φ2. The parametersm2
12 andλ5–λ7 can be complex, while

the remaining parameters are real. Assuming CP conservation, it is possible to find a basis in
which all parameters are real. This is the case currently treated by2HDMC. Following electroweak
symmetry breaking, there are in total eight free parameters(compared to two in the MSSM). These
can be specified using different parametrizations, e.g. thephysical Higgs masses. Higgs masses
and mixings are computed at tree-level. Note that the ratio of the two vacuum expectation values,
tanβ≡ v2/v1 at this stage isnot a physical parameter since the potential is invariant underrotations
in the Higgs space.

A full phenomenological specification of the 2HDM requires also the Yukawa couplings,
which are of the general form

LYuk = QLYU
i Φ̃iUR+QLYD

i ΦiDR+ LLYU
i ΦiER+h.c., (3.4)

where a sum overi = 1,2 is implied. Only one linear combination of each set of Yukawa ma-
trices YF

i (corresponding to the fermion mass matrixMF) can be diagonalized. The orthogonal
combination—which governs the coupling of the charged Higgs boson—can only be simultane-
ously diagonal under the assumption of some symmetry relation among theYi. Most commonly
a Z2 symmetry is used to implement the Glashow-Weinberg criterion [10]. The resulting Yukawa
sectors are known as 2HDM ‘types’. Another option is the so-called aligned model [11], where
a linear relationYF

1 = ξFYF
2 is imposed. In2HDMC the Yukawa sector can be specified using any

of these prescriptions—or in a completely free fashion—which offers a great deal of flexibility in
which models can be studied.

In addition to the Higgs spectrum,2HDMC can be applied to calculate theoretical constraints on
the 2HDM from positivity and unitarity, it computes the Higgs decay modes (including QCD cor-
rections where applicable and some off-shell effects), andthe 2HDM contributions to the oblique
EW parameters. An example of how the latter can be used is shown in Figure 1, which shows the
constraints on the splitting betweenmH± and the other ‘heavy’ Higgs masses from theT parame-
ter (using the experimental valueT = 0.07±0.08 [12]). The two custodial limitsmH± = mA and
mH± = mH are clearly visible.
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Figure 2: Exlusion limits at 95% CL onmH± and tanβ from directH± searches. The results were obtained
usingHiggsBounds 2.0.0 linked to2HDMC. Values belowmH± . 90 GeV are excluded by LEP, and inside
the triangular region by the Tevatron.

3.3 HiggsBounds

The programHiggsBounds [13] answers a frequently asked question in Higgs phenomenol-
ogy: is this model excluded by present collider limits? Evenif the question is simple, to give the
right answer is not. Before the arrival ofHiggsBounds, most theorists therefore either applied
the SM limit mh & 114 GeV, or performed a one-dimensional analysis of the coupling g2

hZZ which
controlse+e− → Zhproduction at LEP, to judge the validity of their models. Both approaches are
often dubious, and withHiggsBounds available it is no longer ‘beyond the scope’ to check the
collider Higgs mass limits. The code has already been linkedwith a number of other programs –
including2HDMCpresented above. For quick testing of only a few models, a webinterface is also
available.

HiggsBounds contains a large collection of results from a number of experimental analyses
at LEP and the Tevatron. Any model withn neutral andmcharged Higgs bosons can be tested, but
the user has to supply the (reduced) couplings and Higgs boson widths (branching ratios). To ensure
the correct statistical interpretation as exclusion at 95%CL in the presence of many channels, the
model prediction is not compared toall analyses; only to the one deemed most sensitive judging by
theexpectedexclusionηexp=

σmodel
σ95

exp
. This single channel is then tested for exclusion by evaluating

the ratio of the prediction to theobservedlimit, ηobs=
σmodel

σ95
obs

. Models withηobs> 1 are excluded.

In the latest version (2.0.0),HiggsBounds includes for the first time limits from direct
searches for the charged Higgs boson. Figure 2 presents the exclusion limits in a general 2HDM
type II, including only the experimental searches forH±. As can be seen from the figure, LEP es-
tablished a firm limitmH± & 90 GeV, while the Tevatron excludes a fairly small mass rangein the
high tanβ region. With the LHC coming up to steam, these charged Higgs mass limits are expected
to improve significantly in the near future. It would be extremely useful to haveHiggsBounds
continuously updated with the latest results.

3.4 SuperIso

The charged Higgs bosons are not only searched for at high-energy colliders, but they can
also play a major role in low-energy processes. In particular for several observables measured in
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Figure 3: Constraints from flavour physics on(mH± , tanβ) in a scan over SUSY models with non-universal
Higgs mass parameters at the GUT scale. The 95% CL allowed points (green) are plotted on top of exclusion
by LEP (black),B→ τν (blue),Bs→ µ

+µ− (yellow), andB→ Dτν (orange). The figure is taken from [19].

B-meson decays, which are sensitive to new charged currents with enhanced couplings to the third
generation fermions. In the MSSM with R-parity conservation, H± gives the only new contribution
to flavor changing processes at tree-level, e.g. the leptonic decays of pseudoscalar mesons. This
can lead to strong and generic constraints onmH± in this wide class of models. To compare a given
scenario to the experimental results, the new physics contributions to the releveant observables
must be evaluated as a function of the model parameters. Thisis the purpose of theSuperIso
code [14] which computes e.g.B→ Xsγ, Bs→ µ

+µ−, Bu → τν, and many additional decay modes
of B, D, andK mesons that are of interest.

One feature ofSuperIsowhich makes it easily extendable to new models is that it doesnot
compute the particle spectra internally, but leaves this task to specialized external codes such as
SoftSUSY [15] (for the MSSM),NMSSMTools [16] (NMSSM), and2HDMC (general 2HDM).
To exchange data between the programs, extensive use is madeof theSLHA [17]. In the future, a
similar role is expected to be played by its flavor counterpart, theFLHA [18].

SuperIso has already been applied to obtain constraints on the properties of charged Higgs
bosons in the MSSM [19], and the 2HDM with general diagonal Yukawa couplings [20]. Fig-
ure 3 comes from the first of these two references. It shows thecombined flavor constraints in the
(mH± , tanβ) plane for GUT-based models with non-universal Higgs mass parameters at the unifi-
cation scale. Note the large exclusion byB→ τν decays, which are mediated byH± at tree-level.

3.5 MC@NLO for charged Higgs production

The description ofH± production at hadron colliders is traditionally separatedinto two dif-
ferent regimes. Thelight charged Higgs (mH+ < mt −mb), which can be descibed as on-shelltt̄
production followed by the decayt → bH+ (t̄ → bH−). The narrow width approximation is appli-
cable, and the production cross section can be written as theproductσ(pp→ tt̄)×BR(t → bH+).
Several NLO implementations exist forσ(pp→ tt̄) [21], and to accurately calculate BR(t → bH+)

many tools are available (e.g.FeynHiggs in the MSSM).2

2To obtain a reliable prediction for BR(t → bH+) in SUSY models at high tanβ, it is essential to include the∆b

corrections to thetbH+ coupling.
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WhenH± is instead heavier than the top quark, there will no longer bean intermediate on-
shell top quark. There will instead be associated production of tH±, which can be described either
in a five-flavor scheme (5FS) as due tobg→ tH±, or asgg→ tbH+ (4FS). The two processes
require proper matching [22], for which the Monte Carlo (MC)implementationMATCHIG [23] is
available. The QCD corrections totH± production are known both in the 5FS [24], and the 4FS
[25]. The 5FS calculation was recently implemented [26] in the MC@NLO framework [27].

To have an MC@NLO implementation of this process has severalbenefits over leading order:
the NLO computation offers a reliable normalization of the cross section, a much reduced depen-
dence on the unphysical renormalization and factorizationscales, and an ‘exact’ matrix element
description of one additional parton. On the other hand, theparton shower approach of the Monte
Carlo assures the correct description in the soft and collinear regions of phase space. Unlike a pure
fixed order partonic calculation, the implementation in an event generator also has the advantage of
producing dressed events (with hadronization, underlyingevent, etc.) which are fully exclusive and
ready for detector simulation. We strongly encourage the experimental collborations to implement
the use of MC@NLO for all further charged Higgs analyses.

4. Summary and conclusions

Software tools are essential to particle physics. We have introduced the toolbox for charged
Higgs physics, and highlighted the physics aspects of some of the tools it contains in more detail.
There has been rapid development of tools for charged Higgs physics since the previous workshop
in 2008. To summarize, I would like to emphasize in particular three recent achievements:

• The MC@NLO code fortH± production, which was actually on the wishlist already from
cHarged 2006, has been completed. This is the first MC@NLO implementation of a new
physics process that is part of the official release.

• HiggsBounds, which makes the comparison of model predictions to vast amounts of ex-
perimental data on Higgs exclusion fast and simple. It makesit into this list especially since
it now includes limits from charged Higgs searches.

• 2HDMC, which covers most phenomenological aspects of the general(CP-conserving) 2HDM.
We hope that the existence of this code can lead to increased activity and further the collab-
oration between theory and experiment on the exploration ofthese models.

Naturally, there has also been continued development and improvements on most other tools during
the last years. We think Higgs phenomenology in general is well-equipped to meet the LHC data.
Of course, a few interesting areas of possible development were identified and discussed in the
course of cHarged 2010. This ensures that not only LHC discoveries—but also some interesting
new tools—will be reported on in two years from now.
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