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It is assumed that current state of the Universe is described by the Inert Doublet Model, containing
two scalar doublets, one of which is responsible for EWSB and masses of particles and the second
one having no couplings to fermions and being responsible for dark matter. We consider possible
evolutions of the Universe to this state during cooling down of the Universe after inflation. We
found that in the past Universe could pass through phase states having no DM candidate. In
the evolution via such states in addition to a possible EWSB phase transition (2-nd order) the
Universe sustained one 1-st order phase transition or two phase transitions of the 2-nd order.
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Evolution of Universe to modern IDM Ilya F. Ginzburga

1. Introduction

About 25% of the Universe is made of Dark Matter (DM). Different candidates for DM particle
are now discussed, with masses constrained by the accelerator and astrophysical data.

One of the widely discussed models is the Inert Doublet Model (IDM) [1]. The model contains
"standard" scalar (Higgs) doublet ϕS, similar to that in the SM, and scalar doublet ϕD, which doesn’t
receive vacuum expectation value (v.e.v.) and doesn’t couple to fermions. Four degrees of freedom
of the Higgs doublet ϕS are as in the SM: three Goldstone modes and one mode that becomes the
Higgs boson hS. All components of the scalar doublet ϕD are realized as massive scalar D-particles:
charged D± and neutral DH and DA. They possess a conserved multiplicative quantum number and
therefore the lightest particle among them can be considered as a candidate for DM particle.

Here we assume that IDM with neutral DM particles DH describes the current state of the
Universe. We discuss possible ways of the the phase evolution of Universe during its cooling down
after inflation, in continuation of analysis [3]. Complete version of this paper is given in [2].

The electroweak symmetry breaking via the Higgs mechanism is described by the Lagrangian
L = L SM

g f +T −V +LY (ψ f ,ϕS). Here, L SM
g f describes the SU(2)×U(1) Standard Model inter-

action of gauge bosons and fermions, which is independent on the realization of the Higgs mech-
anism, T is the standard kinetic term for two scalar doublets ϕS and ϕD and V is the potential for
these two scalars. The LY describes the Yukawa interaction of fermions ψ f with only one scalar
doublet ϕS of the same form as in the SM.

Without loss of generality we write most general potential, which can describe IDM, as

V =−1
2

[
m2

11(ϕ
†
S ϕS)+m2

22(ϕ
†
DϕD)

]
+

λ1

2
(ϕ †

S ϕS)
2+

λ2

2
(ϕ †

DϕD)
2+λ3(ϕ †

S ϕS)(ϕ †
DϕD)+

+λ4(ϕ †
S ϕD)(ϕ †

DϕS)+
λ5

2

[
(ϕ †

S ϕD)
2+(ϕ †

DϕS)
2
]
, λ5 < 0 .

(1.1)

Here all parameters are real. To make some equations shorter, we use the abbreviations:

R = (λ3 +λ4 +λ5)/
√

λ1λ2 , µ1 = m2
11/

√
λ1, µ2 = m2

22/
√

λ2 . (1.2)

This potential is invariant under discrete S-transformation and D-transformation, defined as

S : ϕS
S−→−ϕS, ϕD

S−→ ϕD , D : ϕS
D−→ ϕS, ϕD

D−→−ϕD , SM
S,D−−→ SM . (1.3)

(Here SM denote the SM fermions and gauge bosons). Therefore, both D-symmetry and S-symmetry
are conserved by the potential. The Yukawa term respects D-symmetry but violates S-symmetry.

To have a stable vacuum, the potential must be positive at large quasi–classical values of fields
|ϕi| (positivity constraints). These conditions limit possible values of λi (see e.g. [4]). In terms of
parameters (1.2) positivity constraints which are needed in our analysis, can be written as

λ1 > 0 , λ2 > 0, R+1 > 0. (1.4)

2. Thermal evolution

Since the Hubble constant is small, a statistical equilibrium at every temperature T takes place.
The ground state of such thermal system is given by a minimum of the Gibbs potential

VG = Tr
(

Ve−Ĥ/T
)
/Tr

(
e−Ĥ/T

)
. (2.1)
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In the first nontrivial approximation and high enough temperature the obtained Gibbs potential has
the same form as the basic potential V (1.1) at zero temperature. The coefficients λ ′s of the quartic
terms in the potential VG and V coincide, while the mass terms vary with temperature:

m2
11(T ) = m2

11 − c1T 2 , m2
22(T ) = m2

22 − c2T 2 ,

c1 =
3λ1 +2λ3 +λ4

12
+

3g2 +g′2

32
+

g2
t +g2

b
8

, c2 =
3λ2 +2λ3 +λ4

12
+

3g2 +g′2

32
.

(2.2)

Here g and g′ are the EW gauge couplings, gt ≈ 1 and gb ≈ 0.03 are the SM Yukawa couplings for
t and b quarks, respectively.

Each of coefficients c1 and c2 can be either positive or negative. However, in virtue of positivity
conditions (1.4) their sum is positive. According to (4.1), for a realization of the present inert
vacuum with neutral DM particle one needs λ4 + λ5 < 0. Therefore, at R > 0 we have λ3 > 0.
Since λ5 < 0, we have c1 > 0, c2 > 0. At R < 0 there are no constraints on signs of c1, c2. So,

c1 + c2 > 0 , R > 0 : c1 > 0, c2 > 0 ; R < 0 : arbitrary signs of c1,2 . (2.3)

3. Extrema of the potential

We first consider extrema of the potential (1.1) at arbitrary values of parameters. The extrema
conditions: ∂V/∂ϕi|ϕi=⟨ϕi⟩ = 0, ∂V/∂ϕ †

i

∣∣∣
ϕi=⟨ϕi⟩

= 0, (i = S, D) define the extremum values ⟨ϕS⟩
and ⟨ϕD⟩ of the fields ϕS and ϕD. The extremum with the lowest energy realizes the vacuum state.

For each electroweak symmetry violating extremum with ⟨ϕS⟩ ̸= 0, one can choose the z axis in
the weak isospin space so that ⟨ϕS⟩ has only lower component (choosing a "neutral direction" in
the weak isospin space) with free form for ⟨ϕD⟩. Therefore, one can write the general solution of

extrema conditions as ⟨ϕS⟩=
1√
2

(
0
vS

)
, ⟨ϕD⟩=

1√
2

(
u

vD

)
with real, positive vS.

The solutions of extrema conditions with u = 0 are called neutral extrema. In this case the ex-
trema conditions can be written as a system of two degenerate cubic equations with four solutions:

vS(−m2
11 +λ1v2

S +λ345v2
D) = 0 , vD(−m2

22 +λ2v2
D +λ345v2

S) = 0 , v2
S, v2

D > 0 .
This system has four solutions (here Ea are extrema energies):

EWsEWsEWs : EWsymmetric vD = 0, vS = 0, EEWs = 0; (3.1)

I1I1I1 : inert vD = 0, v2 ≡ v2
S =

m2
11

λ1
, EI1 =−m4

11
8λ1

≡−µ2
1

8
; (3.2)

I2I2I2 : inert − like vS = 0, v2 ≡ v2
D =

m2
22

λ2
, EI2 =−m4

22
8λ2

≡−µ2
2

8
; (3.3)

MMM : mixed


v2

S=
µ1 −Rµ2√
λ1 (1−R2)

, v2
D=

µ2 −Rµ1√
λ2 (1−R2)

,

EM =
−µ2

1 −µ2
2 +2µ1µ2 R

8(1−R2)
.

(3.4)

Note: EI1 −EM =
(µ1R−µ2)

2

8(1−R2)
, EI2 −EM =

(µ2R−µ1)
2

8(1−R2)
. (3.5)

For u ̸= 0 the extremum violates not only EW symmetry, but also the U(1) electromagnetic
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symmetry, leading to the charge breaking extremum. This extremum can realize vacuum state only
if λ4 +λ5 > 0 [5, 3]. This inequality doesn’t allow to have neutral DM particle (see (4.1)).

4. Neutral vacuum states

Electroweak symmetric vacuum EWsEWsEWs with ⟨ϕi⟩= 0 is a minimum realizing vacuum state if
m2

11 < 0, m2
22 < 0. Here gauge bosons and fermions are massless, scalar doublets ϕS and ϕD are

massive.
Inert vacuum I1I1I1 preserves D-parity but breaks S-parity. It describes reality in the IDM. The

field decomposition near extremum is ϕS =
1√
2

(
G+

√
2

v+hS + iG

)
, ϕD =

1√
2

(
D+

√
2

DH + iDA

)
, where G±

and G are Goldstone modes. The Higgs particle hS interacts with the fermions and gauge bosons
just as the Higgs boson in the SM. The scalar D-particles DH , DA,D± don’t interact with fermions.
Because of D-parity conservation the lightest D-particle is stable, being a good DM candidate.

The inert extremum exists only if m2
11 > 0 (3.2). In accordance with (3.2), (3.3), this extremum

can be a vacuum only if µ1 > µ2. Besides, one should compare I1 and M extrema. In virtue of (3.5)
at R2 > 1 the energy of extremum M is larger than energy of I1 extremum – so that the extremum I1

realizes vacuum. At R2 < 1 the inert extremum still can be a vacuum in the case, when the mixed
extremum does not exist, i. e. if at least one of quantities v2

S, v2
D defined by eq. (3.4) is negative.

Note, that due to the positivity constraint 1+R > 0 (1.4) in the case when R2 > 1 we have R > 1.
For the opposite case, with R2 < 1, the quantity R can be either positive or negative.

The quadratic part of the potential written in terms of physical fields gives the masses of scalars

M2
hS
= m2

11 , M2
D± =

λ3v2 −m2
22

2
, M2

DH
= M2

D± +
λ4 +λ5

2
v2 , M2

DA
= M2

DH
−λ5v2 . (4.1)

The requirement that lightest D-particle is a neutral one, results in the condition λ4 +λ5 < 0.
The scalars DH and DA have opposite P-parities but since they don’t couple to fermions, there

is no way to assign to them a definite value of P-parity. However, their relative parity does matter
and for example, vertex ZDHDA is allowed while vertices ZDHDH and ZDADA are forbidden.

The Inert-like vacuum I2I2I2 violates both D-symmetry since ⟨ϕD⟩ ̸= 0 and S-symmetry via
Yukawa interaction. It looks as "mirror-symmetric" to the inert vacuum I1. The interactions among
scalars and between scalars and gauge bosons in both cases are identical in form with the change
ϕS ↔ ϕD and correspondingly DH → SH , DA → SA, D± → S±, hS → hD. The unique, but important
distinction between I2 and I1 is given by the Yukawa interaction. The Higgs boson hD couples to
gauge bosons just as the Higgs boson of the SM, however it does not couple to fermions at the tree
level. All fermions, by construction interacting only with ϕS with vanishing v.e.v. ⟨ϕS⟩ = 0, are
massless. Here there are no candidates for the dark matter particles.

The mixed vacuum MMM (with ⟨ϕS⟩, ⟨ϕD⟩ ̸= 0) violates both D- and S-symmetry. It has standard
properties of vacuum in CP-conserved 2HDM. In this vacuum we have massive fermions and no
candidates for DM particle. In accordance with (3.4), (3.5) the mixed extremum is global minimum
of potential, i. e. vacuum, if and only if v2

S > 0, v2
D > 0, R2 < 1. For v.e.v.’s squared given by

eqs. (3.4) the latter conditions can be transformed into the relations between mass parameters m2
ii:

0 < Rµ1 < µ2 < µ1/R (at 1 > R > 0), µ2 > Rµ1 , µ1 > µ2R (at 0 > R >−1). (4.2)
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5. Evolution of phase states of the Universe

Now we consider possible phase history of the Universe, leading to the inert vacuum I1 today.
We depict results in the (µ1(T ), µ2(T )) plane1 – Fig. 1. In accordance with analysis of sect. 4, at
R > 1 this plane contains one quadrant with EWs phase and two sectors, describing the I1 and I2

phases. These sectors are separated by the line µ1 = µ2 (thick black line) – Fig. 1a. At 1 > R > 0
the phase diagram Fig. 1b is obtained from Fig. 1a by insertion in the upper right quadrant the new
sector – the mixed phase M, described in accordance with (4.2) by equation 0 < Rµ1 < µ2 < µ1/R.
At 0 > R >−1 in the phase diagram (Fig. 1c) the the mixed phase M region is realized even beyond
an upper right quadrant µ2 > µ1/R, µ2 > µ1R.

The thermal variations of m2
ii result in modification of vacuum state. The possible current

states of Universe are represented in the Fig. 1 by small black dots P = (µ1, µ2) with µ1 > 0. In
accordance with (2.2) an evolution leading to a given physical vacuum state P is represented by a

I1

I2

EWs

µ1

µ2

P1

P211

12

21

X
I2

I1
EWs

M

µ2

µ1

P3

P4
31

32

41

I2

I1EWs

M

51

52

53

54

P5

µ2

µ1

a b c

Figure 1: The µ-plane and possible evolutions for R > 1 (a), 1 > R > 0 (b), 0 > R >−1 (c).

ray, that ends at a point P. Arrows on these rays are directed towards a growth of time (decreasing
of temperature). The direction of the ray is determined by parameters c̃1 = c1/

√
λ1, c̃2 = c2/

√
λ2,

(2.2). The boundaries between two phases are the phase transition lines. These transitions are of
the 2-nd order for all rays except the 1-st order transition for the ray 12.

The starting point of evolution of Universe to the present day inert phase state can be either
electroweak symmetric (EWs) state, at c2c1 > 0 – rays 11, 12, 21, 31, 32, 41, 51 – or electroweak
symmetry violating (EWv) state, at c2c1 < 0 (for 0 > R >−1 only) – rays 52, 53, 54.

For rays 11, 21, 31, 41, 51 after the second-order EWSB transition at m2
11(T ) = 0, i. e. at the

temperature TEWs,1 =
√

µ1/c̃1 the Universe has entered the present inert phase I1.
For rays 12, 32 the Universe went through the EWSB second-order phase transition into the

inert-like phase I2 at m2
22(T ) = 0, i. e. at the temperature TEWs,2 =

√
µ2/c̃2.

For ray 12 the transition from the inert-like phase I2 into the today’s inert phase I1 at µ2(T ) =
µ1(T ), i. e. at the temperature T2,1 =

√
(µ1 −µ2)/(c1 − c̃2) , is the first order phase transition with

the latent heat Q2,1 = T2,1 (∂EI2/∂T −∂EI1/∂T )T=T2,1
= (µ2c̃1 −µ1c̃2)T 2

2,1/4.
For ray 32 the path from I2 phase to I1 is through the mixed phase M. The second-order phase

transitions happened at the temperatures T (I2 → M) =
√

(µ1 −Rµ2)/(c̃1 −Rc̃2) and T (M → I1) =√
(Rµ1 −µ2)/(Rc̃1 − c̃2).

1We distinguish present day values of parameters µi and their values µi(T ) at some temperature T .
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For rays 52, 53 a high-temperature state of the Universe is the inert-like vacuum I2.
For ray 52 during cooling down the Universe goes through electroweak symmetric phase EWs

into the present I1 phase. The second-order phase transitions I2 → EWs and EWs → I1 happened,
respectively, at the temperatures T2,EWs =

√
µ2/c̃2, TEWs,1 =

√
µ1/c̃1.

For ray 53 during cooling down the Universe passes through the mixed phase M into the
present I1 phase. The phase transitions I2 → M and M → I1 are of the second order.

For ray 54 the Universe stays in the inert vacuum I1 during the whole evolution.

6. Results and discussion

The most important observation we made is as follows: If current state of the Universe is
described by IDM, then during the thermal evolution the Universe can pass through various inter-
mediate phases, different from the inert one. These possible intermediate phases contain no dark
matter, which appears only at the relatively late stage of cooling down of the Universe. To find
what scenario of evolution is realized in nature, one should measure all parameters of potential.

Extra phase transitions at lower temperature than EWSB temperature (and especially first order
phase transition for the evolution along ray 12) can influence baryogenesis even stronger than
transformation of standard second order EWSB transition into the first order one due to term ϕ 3T
[6]. Moreover, in contrast to the standard picture, the considered scenarios allow for the phase
transition to the current inert phase at relatively low temperature. This gives new starting point
for calculation of a today’s abundance of the neutral DM components of the Universe and other
phenomena.

In this paper we calculated thermal evolution of the Universe in the very high temperature
approximation, i. e. for T 2 ≫|m2

ii|. The most interesting effects are expected at lower temperatures,
where more precise calculations are necessary.
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