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We consider a two-Higgs-doublet Model (2HDM) with a softly brokenZ2 symmetry where only

one of the doublets couples to fermions at tree-level. In addition, the other doublet does not

acquire a vacuum expectation value. One can view this model as a generalization of the Inert

Doublet Model (IDM), which has an exactZ2 symmetry. In this paper, the model is presented

together with constraints from theory and the oblique parametersS andT . Some implications for

collider phenomenology is outlined and in particular, we discuss the charged scalar in this model.

At lowest order, the charged scalar decays into a pair of fermions proceed at one loop level. We

also consider charged scalar decays intoW±Z/γ which also occur at one loop level. We describe

briefly how to calculate and renormalize those processes.
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1. Generic two-Higgs-doublet model

The two-Higgs-doublet model (2HDM) provides a simple extension of the Higgs sector of
the Standard Model (SM) by the inclusion of one additionalSU(2)L , Y = 1, complex scalar field
Φ(x) = (Φ+ (x),Φ0 (x))T . The most general renormalizable potential that can be made out of two
such doublets which respects the electroweak gauge symmetry is:

V2HDM = m2
11Φ†

1Φ1+m2
22Φ†

2Φ2−
[

m2
12Φ†

1Φ2+h.c.
]

+
1
2

λ1(Φ†
1Φ1)

2+
1
2

λ2(Φ†
2Φ2)

2+λ3(Φ†
1Φ1)(Φ†

2Φ2)+λ4(Φ†
1Φ2)(Φ†

2Φ1)

+

{

1
2

λ5(Φ†
1Φ2)

2+
[

λ6(Φ†
1Φ1)+λ7(Φ†

2Φ2)
]

(Φ†
1Φ2)+h.c.

}

,

(1.1)

where all parameters are real, except forλ5,6,7 andm2
12 which in general are complex-valued. We

constrain ourselves toCP-conserving Higgs sectors and all parameters are taken to bereal. The
potential (1.1) is invariant under globalU(2)-transformations among the Higgs-doublets. Forλ6,7

andm2
12 = 0 the potential (1.1) is invariant underZ2-transformations of the Higgs-doublets:Φ1 →

Φ1, Φ2 →−Φ2.

The Z2 breaking terms in (1.1) arem2
12 which breaks this symmetry softly,i.e. the Z2-

symmetry is restored in the UV-limit, andλ6,7 which explicitly break this symmetry hard.
A generic basis for the vacuum expectation values (VEVs) which respects the unbrokenU(1)EM

symmetry is〈Φ1〉= (0,vcosβ )T/
√

2, 〈Φ2〉= (0,vsinβ )T/
√

2, where we have introduced tanβ ≡
v2/v1 andv2 = v2

1+ v2
2. The parameter tanβ is not a physical parameter due to theU(2) invariance

of the Higgs Lagrangian. However it will become so when considering fermion-Higgs interactions
which break theU(2) invariance of the Higgs Lagrangian.

2. The Lopsided doublet model

We consider a 2HDM where theZ2 symmetry is softly broken and onlyΦ1 have tree-level
fermions couplings. In addition, onlyΦ1 acquires a VEV, i.e.v = v1, thus we have a physical
realization of the so calledHiggs basis. This model can be thought of as a generalization of the
Inert Doublet Model (IDM) where theZ2 symmetry is exact [1]. The minimization conditions in the
Higgs basis reads:m2

11 = −v2λ1/2, m2
12 = v2λ6/2, giving no constraint onm2

22, which is therefore
a free parameter in the model. Since the soft-Z2 breaking parameterm2

12 is proportional to the
hard breaking parameterλ6, it naively seems that if soft breaking is introduced, the minimization
condition implies that hard breaking also occurs. We shall see that this is not necessarily the case.
Expanding the potential and using the minimization conditions, the mass matrix for theCP-even
states is

M2 =

(

v2λ1 v2λ6

v2λ6 m2
A + v2λ5

)

, (2.1)

where the masses for theCP-odd scalarA and the charged scalarH± are

m2
H± = m2

22+ v2λ3/2, m2
A = m2

H± − v2(λ5−λ4)/2. (2.2)

2



P
o
S
(
C
h
a
r
g
e
d
 
2
0
1
0
)
0
3
2

Charged scalars in a Lopsided doublet model Glenn Wouda

For non-zeroλ6, theh andH will be states of indefiniteZ2-parity due to mixing:

H = (
√

2ReΦ0
1− v)cosα +

√
2ReΦ0

2 sinα = ϕ1cosα +ϕ2sinα (2.3)

h =− (
√

2ReΦ0
1− v)sinα +

√
2ReΦ0

2cosα =−ϕ1sinα +ϕ2cosα , (2.4)

whereα is the angle that diagonalizes the mass matrix (2.1) by an orthogonal transformation. One
notes that ifZ2 is conserved andλ6 = 0, as in the IDM, the mass matrix is diagonal and there will
be no mixing betweenϕ1 andϕ2. Thus the doublets written in mass eigenstates are

Φ1 =
1√
2

( √
2G+

v−hsinα +H cosα + iG0

)

, Φ2 =
1√
2

( √
2H+

hcosα +H sinα + iA

)

, (2.5)

whereG+,G0 are the Goldstone bosons. It should be noted that since onlyΦ1 acquires a VEV,
it is not approriate to callΦ2 a Higgs doublet and the scalarsHiggs bosons. We will from now
on call all the mass eigenstates in this modelscalars. One should note that the limit sinα → 0
restores theZ2-symmetry and we recover the IDM. TheCP-even scalars are given in terms of the
λi’s according to (mH > mh) :

m2
h = m2

A cos2 α + v2λ1sin2α + v2λ5cos2α − v2λ6sin2α , (2.6)

m2
H = m2

A sin2α + v2λ1cos2 α + v2λ5 sin2α + v2λ6sin2α . (2.7)

Using these relations together with the ones form2
A andm2

H± one may solve forλ1,3,4,5:

λ1 =
[

m2
H +m2

h +
(

m2
H −m2

h

)

/cos2α −2v2λ6 tan2α
]

/2v2, (2.8)

λ3 = 2
(

m2
H± −m2

22

)

/v2, (2.9)

λ4 =
[

m2
H +m2

h −
(

m2
H −m2

h

)

/cos2α +2v2λ6 tan2α +2m2
A−4m2

H±
]

/2v2, (2.10)

λ5 =
[

m2
H +m2

h −
(

m2
H −m2

h

)

/cos2α +2v2λ6 tan2α −2m2
A

]

/2v2. (2.11)

The mixing angle can be written as sin2α = 2v2λ6/(m2
H −m2

h). In the case of maximal mixing,
sin2α = 1, the above formulas forλ1,4,5 are not valid. The correct formulas for the couplings for
this case are found by simply omitting the factors with cos2α and tan2α in those expressions.

The free parameters of this model are chosen to bemh,mH ,mA,mH± ,λ2,λ7,sinα and m22.
Using the formalism of Davidson and Haber [2] one can find conditions whenZ2 is only softly
broken. It then turns out that it is possible to have soft breaking even with non-zeroλ6, provided
that the following conditions are fullfilled:

(λ1−λ2) [λ345(λ6+λ7)−λ2λ6−λ1λ7]−2(λ6−λ7)(λ6+λ7)
2 = 0, (2.12)

(λ1−λ2)m
2
12+(λ6+λ7)(m

2
11−m2

22) 6= 0, (2.13)

whereλ345= λ3+λ4+λ5. These conditions are valid ifλ1 6= λ2 in a basis whereλ7 =−λ6.
The fermions will acquire mass through yukawa couplings with the Higgs doubletΦ1. If

one also assignsZ2 parities to the fermions in order to avoid flavor changing neutral currents at
tree-level [3], one obtains for tanβ = 0

−Lmass=
MF

v
F̄ F H cosα − MF

v
F̄ F h sinα (2.14)

whereF =U,D,L.
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3. Constraints and Phenomenology

Since the charged scalar and the pseudoscalar do not couple to fermions at tree-level, basically
all flavor constraints and some collider constraints do not apply. As a consequence they might
have been produced already at LEP if light enough. At this stage we first examine theoretical
constraints and constraints from the oblique parametersS,T . We enforce tree-level perturbativity
and unitarity,i.e. the quartic scalar couplingsλi should be smaller than 4π. The unitarity condition
at tree level means that theS-matrix eigenvaluesLi should not be greater than 16π. Also the
requirement that the potential (1.1) should be stable is checked. These constraints and theS,T
parameters are evaulated using the software2HDMC [4]. The evaluatedS,T parameters should fall
within 1σ of figure 10.4 in [5] (reference value for SMmh = 117 GeV). We find large regions
in the parameter space which fulfill these constraints as long as the custodial symmetry is valid;
mH± ≈ mA or m2

H± ≈ m2
H sin2α +m2

h cos2α . Figure 1 displays some examples of allowed regions
in themH± ,mA plane withλ2 = λ1 andλ7 = λ6 in order to fulfill (2.12) and (2.13).
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Figure 1: Examples of allowed regions in themH± ,mA plane from theory andS,T parameter constraints.
The left (right) figure is formh = 150(150) GeV,mH = 250(400) GeV, sinα = 1/

√
2(0.3), m22 = 50(100)

GeV.

4. Decays of the charged scalar

If kinematically allowed, the decaysH± → W±S (S = h,H,A), will dominate since they are
the only occuring tree-level processes without internal propagators. The decay width is of the
order a few to ten GeV and is shown in figure 2. Also shown in the same figure is the decay width
for H± → W±∗S which can be of the order MeV and are calculated with [4]. IfH± → W±∗S is
off-shell enough, 3-body decays might compete with 4-body decays and the loop-induced 2-body
decaysH± → fi f̄ j,W±Z,W±γ .

The diagrams for the loop-induced 2-body decays can be divided into vertex-corrections (fig-
ure 3 a,d,e) and mixing-type ones (figure 3 b,c,f). Starting with H± → W±Z,W±γ , we follow
[6] to obtain the relevant counterterms by expanding the doublets: Φi →

√
Zi Φ̂i and their VEV’s:

vi →
√

Zi (v̂i − δvi), i = 1,2 and ˆ denotes a renormalized quantity. This expansion is then per-
formed inL Φ

kin. At one-loop order,Zi = 1+ δzi, whereδZi is quadratic in the couplingsg and
g′.
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Figure 2: The left (right) figure showsΓ(H± → W±A), for on-shell (off-shell)W±. For H± → W±h(H)

the result should scale as sin2 α (cos2 α) .

The result of the expansion is that the vertex counterterms for H±W∓Z andH±W∓γ are pro-
portional to the one forH±W±-mixing, which is finite in dimensional regularization. Finally, we
have to take into accountH±G±-mixing, which is divergent. The renormalization proceedsby
setting the renormalizedh andH - tadpoles to zero and requiring that the real part of all renor-
malized self-energies vanishes on-shell,e.g.; Re

[

Σ̂H±W∓(p2 = m2
H±)
]

= 0. The self-energy for
H±G±-mixing is determined on-shell by the self-energyΣ̂H±W∓ by the Slavnov-Taylor identity.

For the processH± → fi f̄ j, only H± mixing with W± andG± requires renormalization, since
the vertex diagrams (figure 3 a) have no counterterms. After renormalization, we require that
v̂2 = 0, i.e. that we are still in the Higgs basis.

The summation of all diagrams and numerical evaluation of them is performed usingFormCalc
and related packages [7] using an on-shell renormalizationscheme. For further discussion regard-
ing renormalization conditions and results, we refer to [8].
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Figure 3: Some examples of Feynman diagrams which can contribute toH± → fi f̄ j ,W±Z.
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5. Summary and Outlook

In this paper, we have presented a model where the charged scalar does not couple to fermions
at tree-level but does so at higher orders in perturbation theory. This opens up for an interesting
collider phenomenology and we outline how to calculateH± decays into two fermions. We show
that there are potentially large regions in parameter spacewhich are allowed from theoretical con-
straints and theS andT parameters. In [8] the model and constraints will be discussed in more
detail. Also, the results of the loop-calculations accompanied with 3- and 4 body decays for the
charged scalar will be presented.
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