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1. Introduction

One of the main tasks of the LHC is to search for Supersymmetry(SUSY) [1]. The Minimal
Supersymmetric Standard Model (MSSM) predicts two scalar partners for all Standard Model (SM)
fermions as well as fermionic partners to all SM bosons. Of particular interest are the scalar partners
of the heavy SM quarks, the scalar top quarks,t̃i (i = 1,2) and scalar bottom quarksb̃ j ( j = 1,2)
due to their large Yukawa couplings. Depending on the SUSY mass patterns, possibly important
decay modes of the scalar tops are,

t̃i → b̃ jH
+ (i, j = 1,2) , (1.1)

t̃i → b̃ jW
+ (i, j = 1,2) , (1.2)

whereH+ denotes the (positively) charged MSSM Higgs boson. These processes can constitute a
large part of the total stop decay width, and, in case of decays to a Higgs boson, they can serve as
a source of charged Higgs bosons in cascade decays at the LHC.

For a precise prediction of the partial decay widths corresponding to Eq. (1.1) and Eq. (1.2),
at least the one-loop level contributions have to be taken into account. This in turn requires a
renormalization of the relevant sectors, especially a simultaneous renormalization of the top and
bottom quark/squark sector. Due to theSU(2)L invariance of the left-handed scalar top and bottom
quarks, these two sectors cannot be treated independently.Within the framework of the MSSM
with complex parameters (cMSSM) we review the analysis of various bottom quark/squark sec-
tor renormalization schemes [2], while for the top quark/squark sector a commonly used on-shell
renormalization scheme is applied throughout all the investigations. An extensive list of earlier
analyses and corresponding references can be found in Ref. [2]. The evaluation of the partial decay
widths of the scalar top quarks are being implemented into the Fortran codeFeynHiggs [3–6].

2. The bottom/sbottom sector and its renormalization

2.1 The generic structure

The bilinear part of the Lagrangian with top and bottom squark fields, t̃ andb̃,

Lt̃/b̃ mass= −
(

t̃†
L, t̃†

R

)

Mt̃

(

t̃L
t̃R

)

−
(

b̃†
L, b̃

†
R

)

Mb̃

(

b̃L

b̃R

)

, (2.1)

contains the stop and sbottom mass matricesMt̃ andMb̃, given by

Mq̃ =

(

M2
Q̃L

+m2
q+M2

Zc2β (T3
q −Qqs2

w) mqX∗
q

mqXq M2
q̃R

+m2
q+M2

Zc2β Qqs2
w

)

(2.2)

with Xq = Aq−µ∗κ andκ = {cotβ , tanβ} for q= {t,b}. M2
Q̃L

andM2
q̃R

are the soft SUSY-breaking

mass parameters.mq is the mass of the corresponding quark.Qq andT3
q denote the charge and

the isospin ofq, andAq is the trilinear soft SUSY-breaking parameter. The mass matrix can be
diagonalized with the help of a unitary transformationUq̃,

Dq̃ = Uq̃Mq̃U†
q̃ =

(

m2
q̃1

0
0 m2

q̃2

)

, Uq̃ =

(

Uq̃11 Uq̃12

Uq̃21 Uq̃22

)

. (2.3)
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The scalar quark masses,mq̃1 andmq̃2, will always be mass ordered, i.e.mq̃1 ≤ mq̃2:

m2
q̃1,2

=
1
2

(

M2
Q̃L

+M2
q̃R

)

+m2
q+

1
2

T3
q M2

Zc2β

∓
1
2

√

[

M2
Q̃L

−M2
q̃R

+M2
Zc2β (T3

q −2Qqs2
w)
]2

+4m2
q|Xq|2 . (2.4)

2.2 Renormalization of the bottom/sbottom sector

The field renormalization constants of the bottom/sbottom (as well as of the top/stop) sector
are chosen according to an on-shell prescription [2].

The parameter renormalization can be performed as follows,

Mq̃ → Mq̃ + δMq̃ (2.5)

which means that the parameters in the mass matrixMq̃ are replaced by the renormalized parame-
ters and a counterterm. After the expansionδMq̃ contains the counterterm part,

δMq̃11 = δM2
Q̃L

+2mqδmq−M2
Zc2β Qqδs2

w +(T3
q −Qqs

2
w)(c2β δM2

Z +M2
Z δc2β ) , (2.6)

δMq̃12 = (A∗
q−µκ)δmq+mq(δA∗

q−µ δκ −κ δ µ) , (2.7)

δMq̃21 = δM∗
q̃12

, (2.8)

δMq̃22 = δM2
q̃R

+2mqδmq+M2
Zc2β Qqδs2

w +Qqs
2
w(c2β δM2

Z +M2
Z δc2β ) . (2.9)

Another possibility for the parameter renormalization is to start out with the physical parame-
ters which corresponds to the replacement:

Uq̃Mq̃U†
q̃ → Uq̃Mq̃U†

q̃ + Uq̃δMq̃U†
q̃ =

(

m2
q̃1

Yq

Y∗
q m2

q̃2

)

+

(

δm2
q̃1

δYq

δY∗
q δm2

q̃2

)

, (2.10)

whereδm2
q̃1

andδm2
q̃2

are the counterterms of the squark masses squared.δYq is the counterterm1

to the squark mixing parameterYq (which vanishes at tree level,Yq = 0, and corresponds to the
off-diagonal entries inDq̃ = Uq̃Mq̃U†

q̃, see Eq. (2.3)). Using Eq. (2.10) one can expressδMq̃ by
the countertermsδm2

q̃1
, δm2

q̃2
andδYq. Especially forδMq̃12 one yields

δMq̃12 = U∗
q̃11

Uq̃12(δm2
q̃1
−δm2

q̃2
)+U∗

q̃11
Uq̃22δYq +Uq̃12U

∗
q̃21

δY∗
q . (2.11)

For the top/stop sector we use an on-shell renormalization,see e.g. Refs. [2,7,8]. The various
options to renormalize the bottom/sbottom sector are listed in Tab. 1.

2.3 Summary of the renormalization scheme analysis

A bottom quark/squark sector renormalization scheme always contains dependent counter-
terms which can be expressed by the independent ones. According to our six definitions, these
dependent parameters can beδmb, δAb or δYb. A problem can occur when the MSSM parameters
are chosen such that the independent counterterms (nearly)drop out of the relation determining the

1The unitary matrixUq̃ can be expressed by a mixing angleθq̃ and a corresponding phaseϕq̃. Then the counterterm
δYq can be related to the counterterms of the mixing angle and thephase (see Ref. [7]).
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scheme mb̃1,2
mb Ab Yb name

analogous to thet/t̃ sector:“OS” OS OS OS RS1

“mb, Ab DR” OS DR DR RS2

“mb, Yb DR” OS DR DR RS3

“mb DR,Yb OS” OS DR OS RS4

“Ab DR, ReYb OS” OS DR ReYb: OS RS5

“Ab vertex, ReYb OS” OS vertex ReYb: OS RS6

Table 1: Summary of the six renormalization schemes for theb/b̃ sector investigated in Ref. [2]. Blank
entries indicate dependent quantities. ReYb denotes that only the real part ofYb is renormalized on-shell,
while the imaginary part is a dependent parameter.

dependent counterterms. This can lead to (unphysically) large counterterm contributions in such a
case. As it was shown in Ref. [2] it is possible already in verygeneric SUSY scenarios to find a set
of MSSM parameters which show this behaviour for each of the chosen renormalization schemes.
Consequently, it appears to be difficultby constructionto define a renormalization scheme for the
bottom quark/squark sector (once the top quark/squark sector has been defined) that behaves well
for the full MSSM parameter space. One possible exception could be a pureDR scheme, which,
however, is not well suited for processes with external top squarks and/or bottom squarks.

The analytical and numerical analysis performed in Ref. [2]identfied RS2 as “preferred scheme”.
This schemes showed the “relatively most stable” behavior,problems only occur for maximal sbot-
tom mixing, |Ub̃11

| = |Ub̃12
|, where a divergence inδYb appears. On the other hand, other schemes

with δmb or δAb as dependent counterterms generally exhibit problems in larger parts of the pa-
rameter MSSM space and may induce large effects, sincemb (or the bottom Yukawa coupling) and
Ab enter prominently into the various couplings of the Higgs bosons to other particles.

3. Numerical Example

In this section we show some example results forΓ(t̃2 → b̃1H+) [2]. This decay mode can
serve potentially as a source of charged MSSM Higgs bosons inSUSY cascade decays. The pa-
rameters are chosen according to the two scenarios S1 and S2 as defined in Tab. 2.

In Fig. 1 we show the partial decay widthΓ(t̃2 → b̃1H+) as a function of tanβ (upper left),
as a function ofAb (upper right), as a function ofµ (lower left) and as a function ofϕAb (lower
right plot). “tree” denotes the tree-level value and “full”is the decay width including all one-loop
corrections (including hard QED and QCD radiation, see Ref.[2] for details)2. For S1 the grey
region is excluded and for S2 the dark grey region is excluded. The spikes and dips visible in the
lower left plot are due to various particle thresholds, while the first dip in S1 is due to|Ub̃11

| ≈ |Ub̃12
|.

2Corrections from imaginary parts of external leg self-energy contributions [10] are not included.
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Scen. MH± mt̃2 µ At Ab M1 M2 M3

S1 150 600 200 900 400 200 300 800

S2 180 900 300 1800 1600 150 200 400

Table 2: MSSM parameters for the initial numerical investigation; all parameters are in GeV. We always set
mMS

b (mb) = 4.2 GeV. In our analysis we useMQ̃L
(t̃) = Mt̃R = Mb̃R

=: MSUSY, whereMSUSY is chosen such
that the above value ofmt̃2 is realized. The parameters entering the scalar lepton sector and/or the first two
generations do not play a relevant role in our analysis. The values forAt andAb are chosen such that charge-
or color-breaking minima are avoided.
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Figure 1: Γ(t̃2 → b̃1H+). Tree-level and full one-loop corrected partial decay widths for the renormalization
scheme RS2. The parameters are chosen according to the scenarios S1 and S2. For S1 the grey region is
excluded and for S2 the dark grey region is excluded. Upper left plot: tanβ varied. Upper right plot:
tanβ = 20 and|Ab| varied. Lower left plot: tanβ = 20 and|µ | varied. Lower right plot: tanβ = 20 andϕAb

varied.

5



P
o
S
(
C
h
a
r
g
e
d
 
2
0
1
0
)
0
3
9

t̃i → b̃ jH+ in the cMSSM Sven Heinemeyer

The two spikes in the lower right plot are also due to|Ub̃11
| ≈ |Ub̃12

|, which leads to a divergence
in RS2, which, however, is confined to very narrow intervals.The loop corrections, as can be
observed in all four plots, are relatively modest, staying below∼ 25% for all parameters. The fact
of relatively small one-loop corrections shows that no unphysically large contributions via large
counterterms are introduced, a characteristic of a suitable renormalization scheme.

The real quantity of interest at the LHC is the BR(t̃2 → b̃1H+). This, however, requires the
evaluation ofall decay modes (at the same level of accuracy). The corresponding results will be
presented elsewhere [11].
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