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Gamma-Ray Bursts (GRBs) are characterised at high energies in their prompt emission by impul-
sive peaks with sharp rises, often highly structured, and easily distinguishable against instrumen-
tal backgrounds. The longer-lived afterglow radiation seen at lower energies is much smoother
and would be difficult to detect in a background-limited instrument such as the Gamma-ray Burst
Monitor (GBM) onboard Fermi. Observations above 100 MeV of this type of smooth, long-lived
emission from bright GBM-detected GRBs by the Fermi Large Area Telescope (LAT) suggest
the possibility of extended lower-energy gamma-ray emission which cannot be seen with GBM
using typical GRB analysis methods. We use the Earth Occultation Technique (EOT) to search
for long-lived signals in GBM from well-localised GRBs, with special emphasis on those bursts
for which extended emission was detected above 100 MeV by the Fermi LAT.
We present here an overview of the methods employed in this study as well as some preliminary
results and future goals.
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A search for long-lived emission from well-localised Fermi GBM GRBs

1. Introduction

Launched into a low earth orbit (attitude 565km, i=28.5◦ ) in June 2008, the Fermi Gamma-
Ray Space Telescope consists of two instruments, the primary of which is the Large Area Telescope
(LAT) which uses a pair-production system of detection [1]. The secondary instrument on Fermi,
GBM, consists of 12 sodium iodide (NaI) and 2 bismuth germanate (BGO) scintillation detectors
[2]. The 12 NaI detectors are positioned in clusters of 3 at the corners of the LAT. This gives
GBM a field of view (FOV) which encompasses the entire unocculted sky. Locations of GRBs are
determined via the relative counts in each detector with a statistical error of 1◦ for the brightest
bursts and an additional systematic error of σsys = 3.8◦± 0.5◦ [3]. The combination of NaI and
BGO detectors gives GBM an energy range of 8 keV-40 MeV which overlaps with the lower end
of the LAT’s range (20 MeV-300 GeV).

The most luminous explosions in the universe, GRBs have been studied since their discovery
in the late 1960s [4]. The first afterglow emission was detected in X-ray [5] and optical [6] in 1997.
GRB afterglows in the energy range 1-10 keV have been extensively studied with the Swift/XRT
[7]. However, observations of long-lived high-energy emission from GRBs by the LAT (>100
MeV) on timescales of ks [8] imply the possibility that there exists an extended higher-energy (>10
keV) emission element that may be detected by GBM. The fact that GBM observes the entire sky
means that a smooth structureless feature will be hard to pick out over the background variations;
therefore in order to observe it, a novel method must be employed. Using the EOT a search was
undertaken for evidence of extended emission in the continuous GBM data.

2. Earth Occultation Technique (EOT)

The EOT uses the change in the count rate observed in the NaI detectors when a particular
source enters or exits Earth occultation to determine the flux contribution from that source. This
technique was also applied to the Burst and Transient Source Experiment (BATSE) on the Compton
Gamma Ray Observatory (CGRO) [9]. Currently, continuous GBM CTIME data is used; this has
8 energy channels over a range from ∼10 keV-1 MeV and 0.256 s time binning.

For each source of interest the time at which it is occulted is calculated. NaI detectors with
angles less than 60◦ to the source are selected. As the source enters or exits occultation the change
in counts will produce a step in the data for the selected detectors. The source of interest and any
other sources which are occulted in the same window are fit with a quadratic background and source
model. The detector responses are then used to determine the flux. The EOT has successfully been
verified on X-ray sources such as the Crab [10].

To date, GBM has detected and localised over 500 GRBs. Due to the relatively poor accu-
racy of these locations they are not suitable for use with the EOT. Fortunately, a subset of some
100 have been coincidentally observed by complimentary instruments such as Swift, AGILE and
the LAT, which can provide a sufficiently accurate location such that the EOT may be employed.
Additionally, bursts which have been localised by the Interplanetary Network (IPN) [11] generally
have sufficiently good localisations that they are considered for use in this study.
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3. Preliminary Results

It was found that 102 GRBs had a localisation accurate enough to be considered for use. Of
these, 14 did not occult in the neighbourhood of the trigger (∼ 24 hours) and were discarded. The
remaining 88 were processed using the EOT method. Of particular interest to this study were 7 LAT
GRBs with evidence of long-lived emission; 080916C [12], 090323 [13], 090328 [13], 090510
[14], 090626 [15], 090902B [16] and 090926 [17]. Of these, all but 080916C were occulted in the
vicinity of the trigger. Figure 1 shows the lightcurve for 090510, which was also observed by Swift
[18]. The number of times a source is occulted daily depends on its coordinates. Typically it was
found that the GRBs in this study were occulted 10-20 times daily (taking the rise and set as two
separate occultations).

Figure 1: Swift XRT [19], GBM NaI and BGO lightcurves for GRB090510. No clear excess is visible in
the GBM data.

In a preliminary analysis, no obvious excess was noted in these 88 GRBs in the summed-
energy day-scale EOT lightcurve, but further investigation on different time-scales and energy
bands is in progress.

4. Future Work

Upper limits will be calculated for the possible long-lived GBM emission in coincidence with
extended emission seen in the LAT. A catalogue of locations from the IPN is expected to be pub-
lished soon [20]. IPN bursts tend to be bright, increasing the possibility of being able to observe
the counterpart to the long-lived emission seen by the LAT. This will also serve to extend the size
of our sample.

X-ray flares in the afterglows of GRBs [21] have been observed by Swift XRT. In our prelim-
inary analysis we have not observed coincident flaring with GBM, however in the future we hope
to undertake a more rigorous study.
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