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1. Introduction

The the theoretical machinery relevant for the determination of the CKM matrix elements Vcb

and Vub from both exclusive and inclusive decays has arrived at a very mature state. In particular,
the heavy quark expansion (HQE) became an indispensable tool to tackle this problem.

However, the current situation concerning the extracted values for Vcb and Vub indicates that
there is still a residual problem either in our theoretical tools or in our understanding of the current
data. We observe tensions (which has become the “terminus technicus” for a difference between
central values at the level of two σ ’s) between the values determined from exclusive and inclusive
decays for both Vcb and Vub.

In the following I will discuss the theoretical issues relatad to the discussion of these tensions.
While the tension in Vcb currently tends to decrease, the origin of the tension in Vub remains unclear.

2. Inclusive b→ c

One of the most prominent applications of the Heavy Quark Expansion (HQE) is the calcu-
lation of the inclusive semileptonic rate. Within HQE, the total semileptonic rate as well as the
differential distributions are represented in terms of an expansion of the form [1, 32]

dΓ = dΓ0 +

(
ΛQCD

mb

)2

dΓ2 +

(
ΛQCD

mb

)3

dΓ3 +

(
ΛQCD

mb

)4

dΓ4 (2.1)

+dΓ5

(
a0

(
ΛQCD

mb

)5

+a2

(
ΛQCD

mb

)3(
ΛQCD

mc

)2
)
+ ...+dΓ7

(
ΛQCD

mb

)3(
ΛQCD

mc

)4

The coefficients dΓi are themselves functions of mc/mb which are - up to logarithms of mc - regular
in the limit mc→ 0, and which have an expansion in αs(mb). Furthermore, the dΓi depend on non-
perturbative parameters corresponding to matrix elements of increasing dimension.

The relevant hadronic matrix elements are

2MH µ
2
π = −〈H(v)|Q̄v(iD)2Qv|H(v)〉 : Kinetic Energy (2.2)

2MH µ
2
G = 〈H(v)|Q̄vσµν(iDµ)(iDν)Qv|H(v)〉 : Chromomagnetic Moment (2.3)

for dΓ2 and

2MHρ
3
D = −〈H(v)|Q̄v(iDµ)(ivD)(iDµ)Qv|H(v)〉 : Darwin Term (2.4)

2MHρ
3
LS = 〈H(v)|Q̄vσµν(iDµ)(ivD)(iDν)Qv|H(v)〉 : Spin-Orbit Term (2.5)

for dΓ3. These four matrix elements can be extraced from the data; the results of the fits have been
shown in the talk by R. Kowalewski [3].

The current status of the calculation includes the tree level terms up to and including dΓ5, while
for dΓ0 the complete O(α2

s ) corrections are known. Furthermore, for dΓ2 the O(αs) corrections
are known for the µ2

π contribution. The tree level contributions of dΓ4 and dΓ5 are not yet included
in the experimental fits, but their impact on Vcb is very small.

The HQE parameters as well as the quark masses are determined from the data, using mo-
ments of the charged lepton energy, the hadronic energy and the hadronic invariant mass. The
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Figure 1: Correlation in the mb-mc plane for the semileptonic moments (Plot taken from P. Gambino).

corresponding fit results are presented in the talk by R. Kowalewski at this conference [3]. One
delicate issue in the precision determination of Vcb is the issue of quark masses. Althought neither
the bottom nor the charm mass are individually known with sufficiently high precision, the rate as
well the moments map out a strip in the mb-mc plane, corresponding roughly to the combination
mb−0.7mc. As can be inferred from fig. 1, this combination can be extracted from the data of the
semileptonic decays with a sufficient accuracy to warrant a final theoretical uncertainty in Vcb of
about 1.5%.

The size of the radiative corrections is correlated with the choice of the mass definitions, and
there two schemes have been proposed which yield a comparable final precision for the theoretical
predictions. The so-called kinetic scheme uses a mass definition derived from a sum rule for the
kinetic energy [4] while the second scheme is the so-called 1S-scheme where the mass definition is
derived from the 1S state of the Upsilon system [5]. The corresponding fits and results have been
shown in the talk by R. Kowalewski at this conference [3].

The complete calculation of the QCD radiative corrections have been calculated at order α2
s

has been performed in [6, 7]. The order α2
s β0 contributions are known for some time [1], and

it turns out the non-BLM contributions are in fact small. Hence the main impact of the full α2
s

calculation is a slight reduction of the higher-order uncertainties.
Nonperturbative contributions beyond 1/m3

b have been studied up to 1/m5
b indicating that their

impact is as well small. This requires an estimate of the hadronic matrix elements, which is done
on the basis of a “ground state saturation ansatz” decribed in [8]. The contributions to the total rate
turn out to be

δΓ

∣∣∣
1/m4

b

≈+0.29% , δΓ

∣∣∣
1/m3

b

≈−2.84% , δΓ

∣∣∣
1/m2

b

≈−4.29% (2.6)

with δΓ|1/mi
b
= (Γ|1/mi−Γ|1/mi−1)/Γparton. Thus there is some confidence that the 1/mb expansion,

such that a relative theoretical uncertainty of 1-1.5% in the inclusive determination of Vcb has been
achieved.
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3. Exclusive b→ c

The determination of Vcb from exclusive b→ c transitons is based on the expressions

dΓ

dω
(B→ D∗`ν̄`) =

G2
F

48π3 |Vcb|2m3
D∗(ω

2−1)1/2P(ω)(F (ω))2 (3.1)

dΓ

dω
(B→ D`ν̄`) =

G2
F

48π3 |Vcb|2(mB +mD)
2m3

D(ω
2−1)3/2(G (ω))2 (3.2)

where ω = vv′ is related to the energy of the outgoing D(∗) meson in the B-rest frame and P(ω)

is a calculable Phase space factor. The quantities |Vcb|F (1) and |Vcb|G (1) are extracted from
experiment by extrapolation to the non-recoil point ω = 1.

The extraction of Vcb hence needs a theoretical prediction for the form factors F (ω) and
G (ω), at least at the non-recoil point. Heavy Quark Symmetries predict theses form factors to be
unity at ω = 1 in the infinite mass limit for both the bottom and the charm quark. Hence the main
point is to calculate the deviations from unity.

There has been substantial progress with lattice calculations over the last few years. Without
referring to the infinite mass limit the following unquenched lattice results are quoted [9, 10, 11]

F (1) = 0.927±0.024 G (1) = 1.074±0.018±0.016 (3.3)

After the conference an update has been presented at the CKM 2010 workshop [12]

F (1) = 0.908±0.016 (3.4)

Alternatively, one may make use of the heavy mass expansion to determine the form factors.
Based on the so called BPS limit, in which µ2

π = µ2
G, one may estimate the form factor G (1) [13]

G (1) = 1.04±0.02 (3.5)

The deviation form unity of the form factor F (1) can be estimated using zero recoil sum rules; the
most recent estimate is given in [14]

F (1) = 0.86±0.04 (3.6)

It is worthwhile to note that the non-lattice estimates are lower by on to two sigmas compared to
the lattice estimates; consequently the lattice estimates yield a relatively small value of Vcb

Vcb,excl = (38.7±1.1)×10−3 , updated to Vcb,excl = (39.7±1.0)×10−3 at CKM 2010 (3.7)

while the non-lattice estimates yield

Vcb,excl = (41.0±1.5)×10−3 , (3.8)

which turns out to be more compatible with the inclusive extraction.
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4. Exclusive b→ u

The most precise determination of Vub from exclusive decays is performed using the channel
B→ π`ν̄ , since the relevant form factors can be computed quite reliably, either on the lattice or by
QCD sum rules. Determinations based e.g. on B→ ρ`ν̄ are more difficult, since the relevant form
factors cannot be calculated as reliably due to the sizable width of the ρ .

To his end, we write the form factor of the B→ π transition as

〈π(p)|ūγµb|B(p+q)〉= f+Bπ
(q2)(2p+q)µ +Terms with f 0

Bπ(q
2) (4.1)

Neglecting the final state lepton masses we get for the rate

dΓ(B̄0→ π+`−ν)

dq2 =
G2

F |Vub|2

24π3 p3
π | f+Bπ

(q2)|2 +O(m2
`) (4.2)

where pπ is the absolute value of the pion three momentum.
The shape of the form factor is well constrained by analyticity, and the absolute normalization

can be obtained by lattice and QCD sum rule calculations. In fact. the QCD sum rules work best
at q2 = 0, while the lattice calculations prefer values close to the maximum momentum transfer
q2 = (mB−mπ)

2.
Although there are various parametrizations for the form factor available, the variation of the

result for Vub is very small. In fact, using either the Becirevic Kaidalov parametrization [15]

f+(q2) =
f+(0)

(1−q2/m2
B∗)(1−αq2/m2

B∗)
(4.3)

or a parametrization based on a conformal transformation [16, 17]

P(t)φ(t, t0) f+(t) =
∞

∑
k=0

ak(t0)zk(t, t0) (4.4)

with

z(t, t0) =
√

t+− t−
√

t+− t0√
t+− t +

√
t+− t0

, t+ = (mB +mπ)
2 (4.5)

yield form factors which are pratically identical. In combination with the precise measurements an
accurate determination of Vub can be performed.

Combining the results from light-cone sum rules, the measurements of the shape of the form
factor and from lattice QCD and using the (slightly modified) series parametrization (4.4) [18], one
finds the form factor shape as shown in fig. 2. Table 1 gives a sample of the recent results on Vub

using different models and different inputs.
The current theoretical uncertainty on the form factor is estimated to be slightly less than 10%,

and hence the variation in the central values is covered by the theory uncertainties.

5. Inclusive b→ u

Unlike for Vcb, inclusive determinations of Vub can in general not rely on the local version of
the OPE, since the phase space cuts needed to suppress the background from charmed states render
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Figure 2: Combined result for the form factor f+ (figure taken from [18]).

[Ref.] f+Bπ
(q2) f+Bπ

(q2) |Vub|×103

calculation input
FNAL-MILC [19] lattice - 3.38±0.35

HPQCD [20] lattice - 3.55±0.25±0.50
Ball, Zwicky [21] LCSR - 3.5±0.4±0.1
Flynn, Nieves [22] - lattice ⊕ LCSR 3.47±0.29±0.03

Duplancic et al. [23] LCSR - 3.5±0.4±0.2±0.1
Bourrely, Caprini, - lattice⊕ LCSR 3.54±0.24

Lellouch [18]

Table 1: A sample of recent results for Vub from B→ π`ν̄ .

this version of the OPE invalid. In turn, methods relying on the local OPE suffer from only small
data samples.

The version of the OPE that can be used in the case at hand is analogous to deep inelastic
scattering, i.e an expansion in twists. Like in deep inelastic scattering light-cone distribution func-
tions appear, which parametrize the necessary non-perturbative input. Thus, instead of the HQE
parameters we have to deal with non-perturbative functions. The systematic way to formulate this
expansion is “soft collinear effective theory”, which provides the framework for the calculation of
radiative corrections.

Several ways have been proposed to obtain the distribution functions. Since they are universal,
they may also be obtained from other heavy-to-light decays, the most prominent one is B→ Xsγ .
However, at subleading level several distribution functions appear, which cannot be extracted by a
simple comparison with B→ Xsγ .

The moments of the distribution functions are matrix elements of local operators which may
be related to the heavy quark expansion parameters appearing in the OPE for Vcb. Hence another
option is to model the distribution functions under the constraint that the moments coincide with
the ones obtained form the data of B→ Xc`ν̄ such as the BLNP [24] and GGOU [25] approaches.
The most sophisticated approach along this line is the SIMBA project [26], where the distribution

6
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functions are expanded in terms of basis functions. Finally, one may also adopt a more model
dependent approach [27, 28]; however, here it is much more difficult to get a reliable estimate on
the uncertainties.

The results of the corresponding fits have been shown in the talk by R. Kowalewsky at this
conference [3]. The values of Vub from the inclusive determinations turn out to be systematically
larger than the values obtained from B→ π`ν̄ . However, depending on the way to assign and add
uncertainties this may still be considered insignificant. Nevertheless, this has triggered speculations
on possible new physics effects in the b→ u charged current (see e.g. [29]), but also a more deep
scrutiny of the standard model calculation.

This tension has motivated work on NNLO corrections to the current determinations. In the
framework of BLNP a NNLO calculation has been performed [30], which indicates a substantial
size of the NNLO corrections, at least in the BLNP scheme. In fact, for the various cuts on lepton
energy as well as on the hadronic invariant mass one obtains shifts of the extracted Vub value of the
order of 10-15%. However, the shift is positive and hence make the tension between the inclusive
and exclusive even worse.

The second source that has been scrutinized as a possible source for this tension is weak anni-
hilation [31, 32]. It is well known also from lifetime calculations that at order 1/m3

b contributions
of four-quark operators of the form

dΓ

dm2
X
∼ 〈B|b̄Γqq̄Γ

†b|B〉 δ (m2
X) (5.1)

appear, which are concentrated at low hadronic masses. For q = c these have been named “intrinsic
charm”, while for q= u these are called “weak annihilation contributions”. These four quark matrix
elements mix under renormalization with the Darwin term, compensating its µ dependence.

There are two contributions to the four quark matrix elements. The “valence quark indepen-
dent” (VQI) piece is the same for both B+ and B0, while the “valence quark dependent” (VQD) part
creates a difference between B+ and B0 . Hence the VQI contribution may be identified with “in-
trinsic charm” in the formal limit mc→ 0, while the VQD piece can be inferred from corresponding
D decays.

Starting from the results for intrinsic charm one may invent a simple model parametrization
for the VQI part of weak annihilation. As a simple model we may use

〈B|b̄LγµqL q̄LγνbL|B〉 ∼
ρ3

D
4π2 ln

(
µ2

M2
∗ +m2

q

)
=


ρ3

D
4π2

(
ln

(
µ2

m2
q

)
−M2

∗
m2

q
+O(1/m4

q)

)
ρ3

D
4π2 ln

(
µ2

M2
∗

)
+O(m2

q)

(5.2)

where the parameter M∗ can be obtained from the higher-order matrix elements appearing in the
HQE [8]. Extrapolating mc→ 0 we obtain at µ = 0.7 GeV the estimate

δΓV QI

Γsl
≈−0.015 (5.3)

The VQD contribution can be estimated from the data on D decays; scaling up to the bottom
mass yields (see also [33])

Γ(B+→ X`ν̄`)−Γ(B0→ X`ν̄`)

Γ(B→ X`ν̄`)
=−(0.005...0.01) (5.4)
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From these estimates there is no hint that weak annihilation could explain the tension between
exclusive and inclusive determinations of Vub. It would be interesting to verify these estimates by a
measurement of the rates for B+ and B0 in the region of small hadronic masses.

6. Conclusions

Due to heavy quark expansion and heavy quark effective theory, but also due to lattice calcu-
lations and QCD sum rules the theoretical machinery for the determinations of Vcb and Vub is in a
mature state, resulting in an expected relative theoretical uncertainty ranging from approximatlely
1.5% for inclusive Vcb to approximately 10% for exclusive Vub.

Despite of this, certain tensions appear in the results for these CKM matrix elements. The
determination of exclusive Vcb relies on lattice calculations of the form factors at the non-recoil
point, which systematically lead to smaller central values of Vcb compared to the inclusive deter-
minations, yet with an agreement within uncertainties. However, estimates based on QCD sum
rules at zero recoil indicate smaller values for the form factors, resulting in larger values for Vcb

with better compatibility. In the meantime, smaller form factors have also been given by lattice
groups at CKM 2010; my personal conclusion is that the tension between inclusive and exclusive
determinations of Vcb tends to disappear.

More severe is currently the tension in the case of Vub. The exclusive determination from
the semi-leptonic B→ π decay is quite mature, since the various calculations of the form factor
yield a consistent picture, pinning down the form factor quite precisely. In combination with a
significant amount of data a reliable determination of Vub becomes possible. On the other side, the
theory input for inclusive decays also seems in a mature state, although higher twist contributions
are hard to estimate. Still the precision in this determination is at least comparable to the exclusive
determination based on B→ π`ν̄ . Nevertheless, the exclusive determinations systematically lead to
smaller central values compared to the inclusive ones; however, again within uncertainties. Unlike
for Vcb the current tendency is that new data analyses and new calculations make the situation even
worse; the NNLO calculations for the inclusive method seems to drive the central value of Vub

further up, and determinations based on vector-meson final states B→ ρ`ν̄ and B→ ω`ν̄ yield
even smaller central values. This has triggered speculations on possible new physics effects, but in
total the situation concerning Vub is currently unclear.
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