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1. Introduction

During the last years the Landau gauge (LG) propagators in Yang-Mills theory and QCD have
attracted much interest. The extreme infrared behavior was believed to encode the confining fea-
tures of the gluon dynamics. Despite all attempts to simulate on very large lattices, the powerlike
behavior predicted by the Gribov-Zwanziger scenario and preferredby nonperturbative continuum
approaches like Schwinger-Dyson Equations [SDE] and Functional Renormalization Group [FRG]
(in order to guarantee an unbroken BRST symmetry) was impossible to reproduce in lattice simu-
lations [1]. Some exception are simulations in theβ → 0 limit [2]. Today the general opinion is
that the extreme infrared behavior is very sensitive to Gribov copy effects, i.e., strongly dependent
on how the residual gauge freedom is fixed, specifying what actually isthe Landau gauge under
discussion. The latter is insufficiently specified by the transversality condition, ∂µAµ = 0. Mostly
the “minimal Landau gauge” has been adopted, requiring to find the absoluteminimum of the so-
called gauge functional (see below). The impossibility to find it, with finite computational effort,
has suggested e.g. to seek improvement applying the simulated annealing algorithm [3]. Other
prescriptions for the nonperturbative completion of LG have been proposed which select the “best
Gribov copy” directly according to properties of the gluon or ghost propagators [4, 5].

On the other hand, hadron physicsdoes not depend cruciallyon the extreme infrared behav-
ior, the dichotomous “scaling” or “decoupling” form of the propagators.A family of decoupling
solutions (with a scaling limit) actually exists as solutions of the SDE [6, 7] and FRGapproach,
depending on the boundary condition for the ghost propagator at zeromomentum. For the gauge
invariant meson bound states obtained from Bethe-Salpeter equations [8]the indifference with
respect to the asymptotic behavior has been convincingly demonstrated in a recent comparative
study. The behavior in the momentum range above several hundreds of MeV, however, seems to
be more important, e.g. when the QCD gluon propagator is plugged into the SDE for quark prop-
agators [9, 10, 11] as dynamical input. Still, the gluon propagator in this momentum range is not
safely predicted by the present analytical approaches because of truncation uncertainties. Hence,
there is a request for precise lattice results extrapolated to the continuum and infinite-volume limits
in the intermediate momentum region, both for zero and for finite temperatures. Fortunately, in this
momentum range the propagators are practically free of Gribov ambiguities.

The UV asymptotics should be well understandable by comparison with perturbation theory.
The lattice propagators in this range have become an interesting source forthe determination of
ΛMOM [12, 13] and for the attempted identification of gluon condensates [14, 15]. On the other
hand, the identification of the nonperturbative enhancement of the gluon and ghost propagators
in the intermediate momentum range, over the behavior predicted by plain perturbation theory is
of particular interest, too. It has been put into relation to effects of instantons [16] and shown to
depend on the presence of confining degrees of freedom like vortices[17, 18, 19].

A couple of years ago we have started the study of higher loop predictionsfor the propaga-
tors of interest by Numerical Stochastic Perturbation Theory (NSPT). This is a powerful and very
general technique [20] that represents an automatized way of doing perturbation theory. A first
summary of this new application, with results restricted to the ghost propagator, has been given
in Ref. [21]. In two other recent papers, we have discussed also the gluon propagator [22] and
compared the NSPT results with Monte Carlo results for the gluon and ghost propagators [23].
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The interested reader should consult these papers for more information and all details. The com-
parison requires a reformulation of the fully nonperturbative analysis according to the logarithmic
definition of the gluon fields.

2. Landau gauge propagators in NSPT

Compared to continuum perturbation theory, lattice perturbation theory is muchmore com-
plicated. Diagrammatical calculations of the propagators at higher loops would still be hardly
feasible. We have chosen NSPT instead, which is based on a set of parallel Langevin equations,
each of them for the gauge link components in a certain order in the coupling constant. Langevin
simulations in general for lattice gauge theory [24] have been proposed already in the eighties [25]
as an alternative to usual Monte Carlo simulations. Being an adaptation of stochastic quantization,
stochastic gauge-fixing was an obligatory part in the case of gauge theories. For a recent study
using stochastic gauge-fixing, with the focus on questions in close contextwith the Landau gauge
see Ref. [26]. With stochastic gauge-fixing, transversality is only approximately satified, with all
consequences for gauge dependent observables. In order to study gauge-dependent quantities, the
usual Monte Carlo approach uses external gauge-fixing applied to the Monte Carlo configurations
until transversality is achieved with the necessary precision.1 The same can be done for the con-
figurations produced by Langevin simulation which are subject to measurements. For the Langevin
process itself, after each update step, a single iteration of the steepest descent gauge fixing algo-
rithm (see below) can be applied to the updated configuration in order to suppress runaway zero
modes. In our approach this - and the subtraction of zero modes - completesthe Langevin equation
written for the links

∂
∂ t

Ux,µ(t;η) = i
(
∇x,µSG[U ]−ηx,µ(t)

)
Ux,µ(t;η) , (2.1)

to a process with stochastic gauge-fixing. Hereη is a Gaussian white noise.SG is the respective
lattice gauge field action (in our case, the Wilson action), and∇x,µ the left Lie derivative with
respect to the indicated link. Since the continuous-time limit is postponed to the final simulation
data, we repeat the simulations with a set of finite time step valuesε and perform the update
according to the stochastic evolution equation in the Euler scheme

Ux,µ(t + ε;η) = exp(i Fx,µ [U,η ])Ux,µ(t;η) . (2.2)

Here theη-dependence is made explicit,η entering the force additively:

Fx,µ [U,η ] = ε∇x,µSG[U ]+
√

ε ηx,µ . (2.3)

For perturbative applications of the Langevin equation, a decomposition ofthe links into terms of
definite order in the coupling constant is applied and followed through all operations. This applies
to the links

Ux,µ(t;η) → 1+ ∑
l>0

β−l/2U (l)
x,µ(t;η) , (2.4)

1As dicussed above, various options exist how to select the “best gaugecopy”.
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and similarly to the Lie-algebra valued gluon fieldA = logU ,

Ax+ µ̂
2 ,µ(t;η) = ∑

l>0

β−l/2A(l)

x+ µ̂
2 ,µ

(t;η) , (2.5)

where antisymmetry to all orders in 1/
√

β is enforced. Here also the dependence on timet (a
multiple of ε) is indicated.

Then-loop gluon propagator in momentum-space can be practically evaluated as average over
time steps (or, equivalently, as average over the noiseη)

δ abD(n)
µν(p(k)) =

〈
2n+1

∑
l=1

[
Ãa,(l)

µ (k) Ãb,(2n+2−l)
ν (−k)

]〉

η

. (2.6)

in terms of the Fourier-transformed gluon fieldsÃa,(l)
µ (k, t;η). For the integer-valued 4-tuples

(k1,k2,k3,k4) appearing in the Fourier transformation the assigned lattice momenta are:

p̂µ(kµ) =
2
a

sin

(
πkµ

Nµ

)
=

2
a

sin
(apµ

2

)
. (2.7)

The ghost propagator in momentum space,

G(p(k)) =
1

N2
c −1

〈
Tr M−1(k, t : η)

〉
η (2.8)

is actually the Langevin-time average of the Fourier transformed inverseM−1(k, t;η) of the Faddeev-
Popov operator

Mab
xy =

[
∂ L

µ Dµ
]ab

xy
, (2.9)

which contains the backward partial derivative∂ L
µ and the covariant derivative

Dµ [ϕ] =
(

1+
i
2

Φµ(x)− 1
12

(
Φµ(x)

)2− 1
720

(
Φµ(x)

)4
+

1
30240

(
Φµ(x)

)6
. . .

)
∂ R

µ + i Φµ(x) .

(2.10)
The latter contains, besides the forward derivative∂ R

µ , an expansion in powers of[Φµ ]bc=−i fabcϕa
µ ,

the gluon field in the adjoint representation (withϕa
µ = iAa

µ ), which is itself expanded in powers of
1/

√
β . The perturbative expansion ofM is based on collecting inM(l) all terms coming multiplied

with the l -th powerβ−l/2 of the coupling. Then the inverse inl -th order is

[
M−1](l)

= −
[
M−1](0)

l−1

∑
j=0

M(l− j) [M−1]( j)
,

[
M−1](0)

=
[
M(0)

]−1
= ∆−1 . (2.11)

ThusG(n)(p(k)) is obtained from sandwiching
[
M−1

](l=2n)
between plane waves for a set of 4-

tuples(k1,k2,k3,k4), summed over colorsb and taking the time average.
The standard definition of the gluon fieldAµ(x) in terms of the site-to-site transporters (the

linksUx,µ ) in usual Lattice Perturbation Theory (LPT) and NSPT differs from the definition adopted
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in most of the fully non-perturbative calculations (i.e., Monte Carlo simulations with external
gauge-fixing), where the linear definition

A(lin)

x+ µ̂
2 ,µ

=
1

2iag0

(
Ux,µ −U†

x,µ
)∣∣∣

traceless
(2.12)

is employed. Before one can compare Monte Carlo with NSPT, the gauge-fixing of Monte Carlo
configurations must be implemented with the logarithmic definition

A(log)

x+ µ̂
2 ,µ

=
1

iag0
log

(
Ux,µ

)
. (2.13)

Some implications of this definition have been already studied by Furui and Nakajima [27]. In
a recent paper we have posed the question of universality of the gauge-fixed lattice Monte Carlo
results with respect to the two definition of the gluon field [23]. It is crucial toinvestigate the
gluon and ghost propagators in parallel, in order to realize that both are related to their counterparts
by multiplicative renormalizations, that are interrelated in such a way that the running coupling is
universal. One must take into consideration that the Faddeev-Popov operator is redefined together
with the gauge functional (see below) corresponding to the respective definition.

3. Gauge fixing according to the gluon field definitions

For the linear definition the gauge functional is

F(lin)
U [g] =

1
4V ∑

x,µ

(
1− 1

3
Re tr gUx,µ

)
, (3.1)

while the gauge functional for the logarithmic definition (resembling the form
∫

d4x tr A2
µ(x) for

the continuum) is

F(log)
U [g] =

1
4VNc

∑
x,µ

tr

[
gA(log)

x+ µ̂
2 ,µ

gA(log)

x+ µ̂
2 ,µ

]
. (3.2)

In both cases, these functionals have to be minimized under suitable gauge transformations acting
on the linksUx,µ → g Ux,µ = gx Ux,µ g†

x+µ̂ . In any relative minimum the differential Landau gauge
(transversality) condition

(

∑
µ

∂µAµ

)
(x) ≡ ∑

µ

(
Ax+ µ̂

2 ,µ −Ax− µ̂
2 ,µ

)
= 0, (3.3)

is fulfilled for the respective gluon field, Eq. (2.13) or Eq. (2.12) and not for the other. The form
of the gauge functionals essentially determines the type of gauge-fixing algorithm. The bilinear
form of F(lin)

U [g] in terms of the gauge transformationsg suggests an overrelaxation or a simulated

annealing algorithm dealing with the “spin” fieldg(x) while F(lin)
U [g] plays the role of the “spin

Hamiltonian”. The dependence ofF(log)
U [g] on g is more complicated such that a steepest gradi-

ent algorithm with updatesgx → rxgx is an adequate choice. This is realized either in the local
(unaccelerated) modus with

rx = exp

(
−iα (∑

µ
∂µ

gA(log)
µ )(x)

)
, (3.4)
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Figure 1: Change of the maximal value of the squared divergence corresponding to the two gluon field
definitions during gauge fixing according to OR (linear definition, left) and the Fourier-accelerated steepest
descent method (for the logarithmic definition, right) (demonstrated for a 164 configuration atβ = 6.0.
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Figure 2: Number of iterations needed to reach the stopping criterion. Left: as a function of the step size
parameterα of the multigrid-accelerated algorithm (lattice size 164, β = 6.0). Right: as a function of the
lattice size for the three investigated logarithmic gauge fixing algorithms (β = 6.0).

or in a non-local, Fourier or multigrid accelerated modus

rx = exp

(
−iα q2

max ∆−1(∑
µ

∂µ
gA(log)

µ )(x)

)
. (3.5)

Depending on which kind of gauge fixing is attempted, the divergence (3.3)corresponding to the
complementary gauge field definition remains non-vanishing. This is demonstrated in Fig. 1. The
iteration number required by some stopping criterion depends on the step-size parameterα . It is
strongly reduced when the local algorithm is replaced by the non-local, accelerated one. This is
shown in Fig. 2.

The Faddeev-Popov operator has the general form

Mab
xy = Aab

x δxy−∑
µ

(
Bab

x,µ δx+µ̂,y +Cab
x,µ δx−µ̂,y

)
. (3.6)

For the linear definition, this is nothing but the Hessian of (3.1) with respect toinfinitesimal gauge
transformationsg(x) = exp(iωaTa) generated byωa in the neighborhood of the gauge-fixed copy:

Aab
x = Re tr

[
{Ta,Tb}∑

µ

(
Ux,µ +Ux−µ̂,µ

)
]

, (3.7)

Bab
x,µ = 2 Re tr

[
Tb Ta Ux,µ

]
, Cab

x,µ = 2 Re tr
[
Ta Tb Ux−µ̂,µ

]
..
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Figure 3: The ratioCgluon relating the gluon propagator for the two definitions of the gluon field. Data is for
β = 6.0 (left) andβ = 9.0 (right) for a 124 and 164 lattice.
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Figure 4: The ratioCghost relating the ghost propagator for the two definitions of the gluon field and the
respective Faddeev-Popov operator, for 124 and 164 lattices atβ = 6.0 (left) andβ = 9.0 (right).

For the logarithmic definition the form is:

Aab
x = ∑

µ

[
Ωab

x−µ̂,µ +Ωab
x,µ −Ac

x+ µ̂
2 ,µ

f abc
]

, (3.8)

Bab
x,µ = Ωab

x,µ , Cab
x,µ = Ωab

x−µ̂,µ −Ac
x− µ̂

2 ,µ
f abc ,

where the closed form forΩab
x,µ gives rise to the expansion shown in (2.10). To obtain the nonpertur-

bative ghost propagator, the full Faddeev-Popov operator is inverted with a Laplacian-preconditioned
conjugate gradient algorithm and color-diagonal plane wave sources as explained in [28].

4. Monte Carlo: linear versus logarithmic definition

Comparing the gluon propagator and the ghost propagator for the linear definition with the
respective counterpart for the logarithmic definition we found that the ratiois momentum indepen-
dent within statistical errors. This is shown in Fig. 3 for the gluon propagator for two β values and
two latttice sizes. The analogous ratio for the ghost propagator at twoβ values and two lattice sizes
is shown in Fig. 4. The resulting renormalized gluon and ghost dressing functions for the logarith-
mic definition,Zgl = q̂2D(q) andZgh = q̂2G(q), are generated in Fig. 5 by data points from threeβ
values and three corresponding lattice sizes (chosen such that the physical volume is approximately
kept fixed) collapsing on a single curve. Finally, defining a renormalizationgroup invariant running

coupling through the so-called MinMom scheme [12],αMM
s q2) =

g2
0(a)
4π Zgl(a2,q2)Z2

gh(a
2,q2), one

7
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Figure 5: Renormalized gluon (left) and ghost dressing function (right) for the logarithmic definition and
three various lattice spacingsa = a(β ). The physical volume is thereby fixed toV = (2.2 fm)4. Data has
been renormalized atq = µ ≈ 3.2 GeV.
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Figure 6: Running coupling for various lattice sizes andβ -values. Filled symbols refer to the logarithmic
definition, open symbols to the linear one.

sees data from various lattice sizes andβ values for both definitions of the gluon field falling on
the single curve shown in Fig. 6.

5. NSPT versus Monte Carlo and standard LPT

The NSPT propagator results ofn-loop order have to be summed up to the highest available
ordernmax by multiplying them with the appropriate powersβ−n. This restores theβ -dependence
of the propagators. We compare the fully nonperturbative results with the sum of lowest orders of
NSPT in Fig. 7. The convergence can be speeded up by boosted perturbation theory, replacingg2 as
expansion parameter byg2

b = g2/Ppert(g2) > g2, wherePpert is the perturbatively expanded plaquette
which is always measured together with the other observables. Reordering the series in powers of
g2

b gives an improved convergence. This is illustrated for the running coupling in Fig. 8 for two
values of the bare coupling. The symbol(0,0,0,0) means that the Monte Carlo data are restricted
to the trivial joint Polyakov loop sector when the Polyakov loops in all 4 directions take almost real
values. This is achieved byZ(3) flipping before gauge fixing. Forβ = 9.0 the Monte Carlo data in
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Figure 7: Comparison of MC with NSPT results for the bare gluon dressing function (left) and ghost
dressing function (right) atβ = 6.0. The NSPT results are shown cumulatively at tree, 1-loop and 2-loop
level for the gluon and at 1-loop, 2-loop and 3-loop level forthe ghost.
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Figure 8: Comparing naive and boosted LPT (based on NSPT) data for the running coupling constantαs(q2)

with corresponding MC data from the trivial Polyakov sector(0,0,0,0) for a 124 lattice. Left: β = 6.0.
Right: β = 9.0. For the NSPT data, the gluon (ghost) dressing function up to 4-loop (3-loop) accuracy has
been included.

this sector differ from measurements that leave the Polyakov loop unobserved. A convergence of
NSPT to MC results in the high-momentum range is only possible for the(0,0,0,0) sector.

We have developed a technique to eliminate hypercubic artefacts and finite-size effects and to
perform the continuum limit. To present the results up to the three-loop level [21, 22] in the generic
form (with L = log(pa)2)

Jn−loop(a, p,β ) = 1+
1
β

(c1,1L+c1,0) + . . .+
1

β n

(
cn,nLn +cn,n−1Ln−1 + . . .+cn,0

)
.

one needs only the leading-log termscn,nLn from standard LPT as external input. The non-log terms
enter the non-leading-log terms of all higher loops. The one-loop results for both propagators
reproduce well the analytic results of Ref. [29]. The remaining coefficients are the result of our
study.
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