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1. Introduction

The characterization of the physical spectrum of QCD at low energy scales from the first principles
of the theory is an outstanding problem. QCD is a strongly interacting theory at low energy scales
and thus the usual perturbative treatment does not apply. Due to color confinement, there is no
free particle interpretation for the elementary fields appearing in the Lagrangian formulation of the
theory. As a consequence, the properties of the physical spectrum are expected to be encoded in
the correlation functions of suitable composite operators built with the elementary fields.

The numerical lattice studies of the Yang-Mills sector of QCD, with the accurate determination
of the ghost and gluon propagators, have provided valuable results. Gluons show unphysical prop-
erties at low energies with a clear violation of positivity of the propagator. Although this behavior
is expected in a confining theory, the employment of a positivity violating gluon propagator for a
direct analytic evaluation of the correlation functions of the composite operators corresponding to
the states of the spectrum is a highly nontrivial issue.

In the following, we aim at showing that the decoupling type gluon propagator obtained from
the Refined Gribov-Zwanziger theory yields a useful analytic set up for an estimate of the masses
of the first glueball states with quantum numbers JPC = 0++,0−+,2++, while being in very good
agreement with the recent lattice data.

It is worth emphasizing that the framework we are going to outline here can, to some extent, be
considered as model independent. In fact, the gluon propagator could be obtained by performing a
good fit of the lattice data. The resulting expression could be employed to work out the correlation
function of the composite operators corresponding to the aforementioned glueball states. Evidently,
this is a model independent set up. It is remarkable thus that the gluon propagator obtained from
the Refined Gribov-Zwanziger gives a very good fit of the lattice data in the non-perturbative low
energy region, while providing a workable analytic structure.

2. A short survey on the Gribov-Zwanziger theory

The Yang-Mills theory is a gauge theory, thus, in order to be consistently quantized the gauge
redundancy has to be removed. However, imposing a local, Lorentz covariant, condition which
would select one and only one representative for each gauge orbit is not possible [1].

The problem was first noticed by Gribov [2] who observed that the Landau gauge condition ∂µAa
µ =

0 is not sufficient to account for the Gribov copies, i.e. gauge transformed configurations which
still obey the Landau condition. Consider, for example, an infinitesimal gauge transformation
Aa

µ→Aa
µ +Dab

µ ωb. The gauge transformed field would fulfill the Landau condition if ∂µDab
µ ωb = 0.

Zero modes of the Faddeev-operator M ab

M ab =−∂µDab
µ , Dab

µ = ∂µδ
ab−g f abcAc

µ , (2.1)

provide thus examples of Gribov copies. In order to take into account the existence of the gauge
copies, Gribov [2] proposed to restrict the domain of integration in the functional integration to the
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so called Gribov region Ω.1:

Ω =
{

Aa
µ |∂µAa

µ = 0,M ab > 0
}
. (2.2)

The boundary of this region is known as the Gribov horizon and is the locus where the lowest
eigenvalue of M vanishes. Later on, Zwanziger [3] was able to show that the restriction to the
region Ω can be done within a local and renormalizable field theory framework. The resulting
action is known as the Gribov-Zwanziger action

SGZ =
∫

d4x
(

1
4

Fa
µνFa

µν + iba
∂µAa

µ + c̄a
∂µDab

µ cb
)

+
∫

d4x
(
−ϕ̄

ac
µ ∂νDab

ν ϕ
bc
µ + ω̄

ac
µ ∂νDab

ν ω
bc
µ +g f amb(∂ν ω̄

ac
µ )(Dmp

ν cp)ϕbc
µ

)
+
∫

d4x
(

γ
2 g f abcAa

µ(ϕ
bc
µ − ϕ̄

bc
µ )−d(N2−1)γ4

)
, (2.3)

where d = 4 stands for the space-time dimensions. The dimensionful parameter γ is known as the
Gribov parameter. This expression can be written as

SGZ =
1
4

∫
d4x Fa

µνFa
µν + s

∫
d4x
(

c̄a
∂µAa

µ − ω̄
ac
µ ∂νDab

ν ϕ
bc
µ

)
+Sγ , (2.4)

with Sγ given by

Sγ =
∫

d4x
(

γ
2 g f abcAa

µ(ϕ
bc
µ − ϕ̄

bc
µ )−d(N2−1)γ4

)
, (2.5)

and where s denotes for the nilpotent BRST operator, whose action on the fields is specified by

sAa
µ =−Dab

µ cb =−(∂µδ
ab +g f acbAc

µ)c
b ,

sca =
g
2

f acbcbcc ,

sc̄a = iba , sba = 0 ,

sω̄
ab
µ = ϕ̄

ab
µ , sϕ̄

ab
µ = 0 ,

sϕ
ab
µ = ω

ab
µ , sω

ab
µ = 0 . (2.6)

The fields {ϕab
µ ,ϕab

µ } and {ωab
µ ,ωab

µ } are a set of bosonic, resp. fermionic fields introduced in
order to express the action in local form. When the Gribov horizon is removed, which amounts
to formally set γ = 0, these fields give rise to a BRST quartet. They decouple from the theory,
and the Gribov-Zwanziger action reduces to the ordinary Faddeev-Popov action. However, one
has to observe that the parameter γ is not free, being determined in a self consistent way by a gap
equation, called the horizon condition [3]. It reads

∂Evac

∂γ2 = 0 , (2.7)

1It is known that additional gauge copies still remain within the Gribov region. The elimination of all copies is, by
definition, only attained by restricting the domain of integration to the Fundamental Modular Region. However, till now,
a way to implement the restriction to the FMR within a local field theory framework is not available.
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where Evac is the vacuum energy

e−Evac =
∫
[dΦ] e−SGZ , (2.8)

and [dΦ] stands for the functional integration over all fields appearing in SGZ .

An important property of the action SGZ is its multiplicative renormalizability [3, 4, 5, 6] . This is
a highly non-trivial feature that, among other things, enables us to consistently introduce into the
theory composite operators and establish their renormalization properties.

3. The issue of the BRST symmetry

In the absence of the term Sγ , the action (2.4) enjoys BRST invariance. In fact

s
∫

d4x
(

1
4

Fa
µνFa

µν + s
(

c̄a
∂µAa

µ − ω̄
ac
µ ∂νDab

ν ϕ
bc
µ

))
= 0 . (3.1)

The Gribov-Zwanziger action is, however, not left invariant by the BRST transformations, eqs.(2.6),
which are broken by the term Sγ , namely

sSGZ = sSγ = γ
2
∫

d4x
(
−g f abc(Dad

µ cd)(ϕbc
µ − ϕ̄

bc
µ )+g f abcAa

µω
bc
µ

)
. (3.2)

Though, the breaking of the BRST symmetry in the GZ framework is of a very special nature.
Notice that the breaking term, being of dimension two in the fields, is a soft breaking. This fact en-
sures the renormalizability of the theory through suitable Ward identities [3, 4, 5, 6]. Recently, there
have been several developments in the understanding of this breaking. Notice that the breaking is
quadratic in the fields. As such, it has to be treated as a composite field operator, a feature which
requires the introduction of a suitable set of external sources in order to implement the Slavnov-
Taylor identities. In [7], it has been shown that this breaking can be converted into a linear one. As
a consequence, the resulting nilpotent linearly broken BRST symmetry can be directly employed
to obtain a system of Slavnov-Taylor identities. In [8, 9], it was pointed out that the softly broken
BRST symmetry of the GZ action can be converted into a exact symmetry, however non-local. This
non-local invariance has been localized in [10], though the resulting BRST symmetry is not nilpo-
tent. Also, there are attempts to investigate the soft BRST breaking as a spontaneous symmetry
breaking [11].

In summary, we can safely state that these results have already provided a certain understanding of
the important issue of the BRST symmetry versus the Gribov horizon. The main result obtained
so far remains that of the renormalizability of the theory. As a byproduct, let us mention the very
important property that a local, gauge invariant operator O can be promoted to a renormalized
operator OR, so that the correlation functions

〈OR(k)OR(−k)〉 (3.3)

can be consistently evaluated order by order within the GZ framework [12].
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4. Dimension two condensates and the Refined Gribov-Zwanziger theory

The action (2.4) is supposed to account for nonperturbative infrared features of Yang-Mills theory.
The development of a non-zero value for the Gribov parameter γ from the gap equation (2.7) is
a manifestation of the nontrivial properties of the vacuum of the theory induced by restriction to
the Gribov horizon. Moreover, there are additional sources on nonperturbative effects which can
be encoded in a set of dimension 2 condensates, namely 〈Aa

µAa
µ〉 and 〈ϕab

µ ϕab
µ −ω

ab
µ ωab

µ 〉. It is
possible to explicitly take into account the contribution of these condensates by introducing the
corresponding dimension two operators directly into the GZ action. The resulting formulation
is, by now, known as the Refined Gribov-Zwanziger theory [6], and amounts to the following
modification of the original Gribov-Zwanziger theory:

SGZ → SRGZ = SGZ +
∫

d4x
(

m2

2
Aa

µAa
µ −M2

(
ϕ

ab
µ ϕ

ab
µ −ω

ab
µ ω

ab
µ

))
, (4.1)

As well as the Gribov-Zwanziger action, the refined action SRGZ also enjoys multiplicative renor-
malizability [6].

5. A look at the gluon and ghost propagators

Let us give a look at the gluon and ghost propagators obtained from both GZ and RGZ actions,
respectively. Let us start with the GZ formulation. Here, the tree-level gluon propagator in d = 4,3
and 2 dimensions is given by

〈Aa
µ(k)A

b
ν(−k)〉GZ = δ

ab
(

δµν −
kµkµ

k2

)
k2

k4 +λ 4 , (5.1)

where λ 4 = 2g2Nγ4. The gluon propagator turns out to be suppressed in the infrared region, attain-
ing a vanishing value at zero momentum, k = 0. On the other hand, the ghost propagator displays
an enhanced behavior in the infrared

〈c̄a(k)cb(−k)〉GZ ∼ δ
ab 1

k4 , for k2 ∼ 0. (5.2)

A gluon suppression and ghost enhancement are only observed for lattice data in 2 dimensions.
They are not in agreement with the most recent lattice data for d = 4,3 dimensions [13, 14, 15],
which seem to point towards a suppressed gluon propagator which attains a non-vanishing value at
k = 0, and to a non-enhanced ghost at k ∼ 0 which keeps essentially the free behavior ∼ 1

k2

∣∣∣
k∼0

.

On the other hand, the gluon propagator obtained from the RGZ formulation in d = 4,3 dimen-
sions shows a different behavior. As in the GZ case, the propagator is suppressed in the infrared.
However, differently from the GZ case, it attains now a nonvanishing value at k = 0, as one observes
from

〈Aa
µ(k)A

b
ν(−k)〉RGZ = δ

ab
(

δµν −
kµkµ

k2

)
k2 +M2

k4 +(M2 +m2)k2 +λ ′4
, (5.3)
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where λ ′4 = 2g2Nγ4 +m2M2. This expression is in very good agreement with the numerical data.
In fact, in d = 4, an accurate fit with the SU(3) lattice data is possible for momentum scales up to
k ∼ 1.5 GeV [16]. The fit is established for the following values of parameters

M2 +m2 ≈ 0.337 GeV2 ,M2 ≈ 2.15 GeV2 ,λ ′4 ≈ 0.26 GeV4 . (5.4)

Figure 1: Fit to the gluon propagator (left) and dressing function (right). Figures taken from [16].

Also, the ghost propagator obtained from RGZ in both d = 4,3 displays a behavior in harmony
with the lattice data

〈c̄a(k)cb(−k)〉RGZ ∼ δ
ab 1

k2 , for k2 ∼ 0. (5.5)

We also point out that in d = 2 the RGZ and the GZ theories coalesce, due to severe infrared
divergences which do not allow to consistently introduce dimension two condensates. Due to this
property, in d = 2 the RGZ theory gives the same results of the GZ theory. Therefore, the RGZ
gives rise to gluon and ghost propagators which are in good agreement with the lattice data in
d = 4,3,2 dimensions. This is a remarkable achievement.

6. i-particles and the glueball spectrum

Both GZ and RGZ gluon propagators are associated to unphysical excitations. In fact, it is straight-
forward to verify that the propagators (5.1) and (5.3) each have two complex conjugated poles. Let
us concentrate on the RGZ propagator. In this case, from (5.4), we can deduce the numerical values
of the complex conjugated masses which, in GeV2 units, are

m2
± = µ

2±
√

2θ
2 = 0.1685±0.4812i. (6.1)

The unphysical excitation associated with these complex masses have been called i-particles [17].

The i-particles diagonalize the quadratic part of the RGZ action, namely

SRGZ =
∫

d4x
[

1
2

λ
a
µ

(
−∂

2 +m2
+

)
λ

a
µ +

1
2

η
a
µ

(
−∂

2 +m2
−
)

η
a
µ + rest

]
. (6.2)
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They provide a useful set up in order to extract the analytic properties of correlation functions of
gauge invariant composite operators. For instance, the abelian part of the gauge invariant composite
operator Fa

µνFa
µν can be decomposed in the following way:

(
Fa

µνFa
µν

)∣∣∣
abelian

=
(
∂µAa

ν −∂νAa
µ

)2
= λ

a
µνη

a
µν + rest . (6.3)

where λ a
µν = ∂µλ a

ν −∂νλ a
µ and ηa

µν = ∂µλ a
ν −∂νλ a

µ are the abelian field strengths of the i-particles
fields. The first term, λ a

µνηa
µν , of expression (6.3) can be shown to be associated to the part of

the two-point correlation function of the operator
(
Fa

µνFa
µν

)∣∣∣
abelian

which displays a cut along the

negative real axis in the complex Euclidean k2 plane, thus having a physical interpretation, see
[17] for details. The remaining part, called rest in eq.(6.3), displays cuts along the imaginary axis
and, as such, has no physical interpretation. Notice that the operator Fa

µνFa
µν has the quantum

numbers of the glueball state JPC = 0++. In order to study the glueball spectrum, in a lowest order
approximation, we shall consider thus the abelian components of suitable composite operators
O(x) displaying the quantum numbers JPC and which, as in the case of

(
Fa

µνFa
µν

)∣∣∣
abelian

, are built

with pairs of i-particles. Further, we look at the two-point functions of the operators O(x). In
order to have a physical meaning, these correlation functions should display a meaningful spectral
representation, i.e.

〈O(k)O(−k)〉=
∫

∞

0
dt

ρ(t)
t + k2 . (6.4)

with the spectral function ρ(t) a positive definite quantity. The spectral function has the general
form ρ(t)= Z ∑i δ (t−mi)+Aθ(t−t0), whith Z and A positive quantities. The scales mi correspond
to the poles of the correlation functions, thus identifying the masses of the physical particles of the
spectrum. Moreover, t0 is the threshold for a multi-particles state. We see thus that the spectral
function carries important information about the physical spectrum of the theory.

There are various methods to extract information on the spectrum from the knowledge of the spec-
tral function, see, for example, [18]. In the present case, a modified reformulation of the moment
problem [19], well adapted to the infrared region, was used to obtain estimates of the glueball
masses of the scalar 0++, pseudoscalar 0−+ and tensor 2++ glueballs. The corresponding glueball
operators in the i-particles representation are given by

O0++(x) = λ
a
µν(x)η

a
µν(x)+ rest, (6.5)

[O2++(x)]
µν

=

(
PµαPνβ −

1
3

PµνPαβ

)(
λ

a
ασ (x)η

a
βσ

(x)+η
a
ασ (x)λ

a
βσ

(x)
)
+ rest, (6.6)

O0−+(x) =
1
2

εµνρσ

(
λ

a
µν(x)η

a
ρσ (x)+η

a
µν(x)λ

a
ρσ (x)

)
+ rest. (6.7)

Using the lattice input for the i-particle masses (6.1), the following estimates have been obtained:

m0++ ≈ 1.96 GeV , m0−+ ≈ 2.19 GeV , m2++ ≈ 2.04 GeV . (6.8)
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Note that the observed mass hierarchy m0++ < m2++ < m0−+ is reproduced2. By comparing these
numbers with the lattice results

mlat
0++ ≈ 1.73 GeV ,mlat

0−+ ≈ 2.59 GeV ,mlat
2++ ≈ 2.40 GeV , (6.9)

we can see a rather good agreement, all data being within a 20% range of approximation.

7. Conclusions

Our main conclusion is that the study of the glueball spectrum looks very promising within
the RGZ framework. To some extent, our construction can be interpreted as showing a remarkable
consistency of the most recent lattice data for the gluon propagator. These data have in fact been
taken as input for the mass parameters entering the RGZ propagator which, in turn, has been em-
ployed to achieve a rather good estimate for the masses of the three lightest glueballs. Also, the
present results provide strong evidence that the interplay between the Gribov horizon and the di-
mension two condensates, as described by the RGZ theory, accounts for a set on nontrivial aspects
of the Yang-Mills theory at low energies. The RGZ gluon and ghost propagators turn out to be in
agreement with the lattice data in d = 4,3,2 dimensions. Also, these propagators have allowed us
to obtain rather good estimates for the lightest glueballs starting from a first principle calculation
of the correlation functions of suitable composite operators.
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