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1. Introduction

The Batalin-Vilkovisky (BV) formalism [1] is a very powerful quantization framework introduced
long ago to deal with the quantization of very general gauge theories, including those with reducible
or open symmetry algebras (e.g., certain formulations of supergravity). There are many areas in
which this formalism has proved invaluable, and the Pinch Technique (PT) [2] is one of those.
Indeed the application of the BV method in this context [3] has allowed the PT to transcend its
diagrammatic origins, to become a fully fledged formal tool capable of enforcing explicit gauge
invariance in (all-order) off-shell Green’s functions [4] and the Schwinger-Dyson equations that
couples them [5], as well as reproducing in an elegant and compact way [6] the recent large volume
lattice data revealing an IR finite gluon propagator and ghost dressing function [7].

In this talk, we will review the BV formalism within the SU(N) Yang-Mills theories, placing
particular emphasis on how it streamlines the derivation of the complete set of identities – Slavnov-
Taylor identities (STIs) in the case of the conventional Rξ gauges and, in addition, background-
quantum identities (BQIs) and Ward identities (WIs) when applied to Background Field Method
(BFM) type of gauges – arising from the local BRST symmetry. Through the derivation and cal-
culation of the Yang-Mills effective charge we will also show that, when properly combined, these
identities provide invaluable information about the underlying IR dynamics.

2. Batalin-Vilkovisky formalism: a primer

As everybody knows, the classical action of a SU(N) Yang-Mills theory1 is invariant under the
BRST transformations

sAm
µ = (Dµc)m; scm =−1

2
g f mnrcncr; sc̄m = Bm; sBm = 0, (2.1)

where s is the BRST operator, (Dµc)m = ∂µcm +g f mnrAn
µcr is the usual covariant derivative, while

B represents the so-called Nakanishi-Lautrup multiplier corresponding to a yet to be specified
gauge-fixing condition F .

An efficient method for elevating this symmetry to the quantum level is by applying the afore-
mentioned BV method [1], which starts by introducing an anti-field Φ∗ for each field Φ which
transforms non-linearly under the BRST operator. The anti-fields Φ∗ have opposite statistics with
respect to the corresponding fields Φ, a ghost charge gh(Φ∗) = gh(Φ∗) =−1−gh(Φ) and, choos-
ing the (mass) dimension of the ghost field to be 0, a dimension dim(Φ∗) = 4−dim(Φ).

The next step is to add to the original (gauge fixed) action the coupling term ∑Φ∗s Φ, so that
it now reads (ξ is the gauge fixing parameter)

Γ
(0) =

∫
d4x
[
−1

4
Fm

µνFµν
m +LGF +LFPG +A∗mµ (Dµc)m− 1

2
g f mnrc∗mcncr

]
LGF +LFPG = s

(
c̄mF m− ξ

2
c̄mBm

)
. (2.2)

1We concentrate for convenience on the case of pure Yang-Mills theories; the inclusion of fermions does not present
any problem.
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Then, the original gauge invariance of the theory plus the nihilpotency of the BRST operator, makes
it relatively easy to prove that the classical action above satisfies the master equation

∫
d4x

{
δΓ(0)

δA∗µm

δΓ(0)

δAm
µ

+
δΓ(0)

δc∗m
δΓ(0)

δcm +Bm δΓ(0)

δ c̄m

}
= 0. (2.3)

Now, the BRST symmetry is crucial for endowing a theory with a unitary S-matrix and gauge-
independent physical observables; therefore, one implements it to the all-order level by establish-
ing the quantum corrected version of the master equation (2.3) in the form of the complete STI
functional

SC(Γ)[Φ] =
∫

d4x

{
δΓ

δA∗µm

δΓ

δAm
µ

+
δΓ

δc∗m
δΓ

δcm +Bm δΓ

δ c̄m

}
= 0, (2.4)

where Γ = Γ[Φ,Φ∗] is now the effective action.
When dealing with linear gauge fixing functions F , such as the conventional Rξ gauge

F m = ∂ µAm
µ , the structure of the STI generating functional of Eq. (2.4) can be further simplified

by omitting the last term proportional to the B field; we thus obtain the reduced STI functional

S (Γ)[Φ] =
∫

d4x

{
δΓ

δA∗µm

δΓ

δAm
µ

+
δΓ

δc∗m
δΓ

δcm

}
= 0. (2.5)

In practice, the STIs generated from this reduced functional coincide with the ones that would have
been obtained from the complete functional after the implementation of the so-called ghost (or
Faddeev-Popov) equation described in Section 2.2 below [8].

The STI functional of Eq. (2.4) can be easily adapted to the BFM type of gauges, where one
splits the gluon field into a background Â and a quantum part, performs the shift A→ A + Â and
retains gauge invariance with respect to the background field by choosing the special gauge fixing

F m = (D̂µAµ)m = ∂
µAm

µ +g f mnrÂµ
n Ar

µ , (2.6)

(D̂ is the background covariant derivative). In order to implement the equations of motion for the
background fields at the quantum level, one next extends the BRST symmetry to the background
gluon field, through the relations

sÂm
µ = Ω

m
µ , sΩ

m
µ = 0, (2.7)

with Ω denoting a (classical) vector field with the same quantum numbers as the gluon, ghost
charge +1 and Fermi statistics. The dependence of the Green’s functions on the background fields
is then controlled by the modified STI functional

S ′(Γ′)[Φ] = S (Γ′)[Φ]+
∫

d4x Ω
µ
m

(
δΓ′

δ Âm
µ

− δΓ′

δAm
µ

)
= 0, (2.8)

where Γ′ denotes the effective action that depends on the background source Ω (with Γ≡ Γ′|Ω=0),
and S (Γ′)[Φ] is the reduced STI functional of Eq. (2.5) (since the BFM gauge fixing function is
linear in the quantum field, we can indeed restrict our considerations to the reduced STI functional

3
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alone also in this case). The functional (2.8) above will then provide the BQIs, which as already
mentioned, relate 1PI Green’s functions involving background fields with the ones involving quan-
tum fields.

Finally, the background gauge invariance of the BFM effective action is encoded into the WI
functional

Wϑ [Γ′] =
∫

d4x ∑
ϕ=Φ,Φ∗

(δϑ ϕ)
δΓ′

δϕ
= 0, (2.9)

where ϑ m (that now plays the role of the ghost field) is the local infinitesimal parameter corre-
sponding to the SU(N) generators tm. The transformations δϑ Φ are thus given by

δϑ Am
µ = g f mnrAn

µϑ
r

δϑ Âm
µ = ∂µϑ

m +g f mnrÂn
µϑ

r,

δϑ cm =−g f mnrcn
ϑ

r
δϑ c̄m =−g f mnrc̄n

ϑ
r, (2.10)

and the corresponding anti-fields transformations δϑ Φ∗ coinciding with the transformations of the
corresponding quantum fields above according to their specific representations. This functional
will give rise to the WIs satisfied by Green’s functions when contracted with the momentum corre-
sponding to a background leg.

2.1 Functional differentiation rules

Slavnov-Taylor, Background-Quantum and Ward identities are all obtained by taking functional
derivatives of the corresponding functionals S , S ′ and W [Eqs. (2.5), (2.8) and (2.9) respectively],
setting afterwards all fields, anti-fields and sources to zero. However, in order to reach meaningful
expressions, one needs to keep in mind that:

1. S and S ′ have ghost charge 1;

2. Functions with non-zero ghost charge vanish, for the ghost charge is a conserved quantity.

Then in order to extract non-zero identities the following rules apply

• Slavnov-Taylor identities. In this case one needs to differentiate the functional S of Eq. (2.5)
with respect to a combination of fields, containing either one ghost field, or two ghost fields
and one anti-field. The only exception to this rule is when differentiating with respect to a
ghost anti-field, which needs to be compensated by three ghost fields. In particular, iden-
tities involving one or more gauge fields are obtained by differentiating S with respect to
the set of fields in which one gauge boson has been replaced by the corresponding ghost
field. This is due to the fact that the linear part of the BRST transformation of the gauge
field is proportional to the ghost field: sAm

µ |linear = ∂µcm. For completeness we notice that,
for obtaining STIs involving Green’s functions that contain ghost fields, one ghost field must
be replaced by two ghost fields, due to the non linearity of the corresponding BRST trans-
formation (scm ∝ f mnrcncr). This implies in turn that only certain (properly symmetrized)
combinations of ghost Green’s functions will appear in these identities, sometimes limiting
their usefulness.
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• Background-Quantum identities. In this case the rule is very simple, since all one needs to do
is to differentiate the STI functional S ′ of Eq. (2.8) with respect to the background source
Ω and the needed combination of fields (background or quantum).

• Ward identities. Finally, in order to obtain the WIs satisfied by the Green’s functions in-
volving background gluons Â, one has to differentiate the functional W of Eq. (2.9) with
respect to a combination of fields in which the background gluon has been replaced by the
corresponding gauge parameter ϑ .

The last technical point to be clarified is the dependence of the identities on the (external)
momenta. After Fourier transforming the result of the differentiation, one should notice that the
integral over d4x appearing in Eqs. (2.5), (2.8) and (2.9), together with the conservation of momen-
tum flow of the Green’s functions, implies that no momentum integration is left over; as a result,
the identities will be expressed as a sum of products of (at most two) Green’s functions.

2.2 Ghost and anti-ghost equations

There are two more useful equations that can be written down. To do that, let us start notice that
the (BFM) equation of motion of the B field reads

δΓ

δBm − (D̂µAµ)m = 0, (2.11)

(for the equivalent equation in the Rξ gauges just set the background field Â to zero). This equation
in conjunction with the linearity of the gauge fixing function, implies the existence of a constraint
that takes the form of the so-called ghost (or Faddeev-Popov) equation

δΓ′

δ c̄m +

(
D̂µ δΓ′

δA∗µ

)m

−
(
Dµ

Ωµ

)m−g f mrsÂr
µΩ

µ
s = 0, (2.12)

(again for the equivalent equation in the Rξ gauges set the background field Â and source Ω to
zero). Notice that by “undoing” the splitting of the field A into background and quantum parts (that
is using A+ Â→ A) we can write the equation above in the more compact form

δΓ′

δ c̄m +

(
D̂µ δΓ′

δA∗µ

)m

−
(
Dµ

Ωµ

)m = 0. (2.13)

Finally, when considering the background-Landau gauge (D̂µAµ)m = 0, the additional (local)
anti-ghost equation appears, that reads [9]

δΓ′

δcm −
(
DµA∗µ

)m−
(

D̂µ δΓ′

δΩµ

)m

+g f mnr δΓ

δBn c̄r−g f mnrc∗ncr = 0. (2.14)

Notice that in the conventional Rξ Landau gauge only an integrated (and correspondingly less
powerful) version of this identity exists.
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3. Examples

In this section we give several examples of the kind of interesting and powerful identities that can
be obtained within the BV framework introduced before. The important point that we want to stress
is that every auxiliary function that appears in the identities below can be explicitly calculated by
using the set of Feynman rules derived from the action (2.2) – see for example the second paper
in [5].

3.1 Background-quantum identities in the gluon two-point sector

Consider first the two-point gluon sector. Differentiating the STI functional S ′ of Eq. (2.8) with re-
spect to the combinations consisting of a background source/field and a background source/quantum
field. On then gets the following identities

iΓÂm
µ An

ν
(q) =

[
igρ

µδ
mr +Γ

Ωm
µ A∗ρr

(q)
]

ΓAr
ρ An

ν
(q)

iΓÂm
µ Ân

ν
(q) =

[
igρ

µδ
mr +Γ

Ωm
µ A∗ρr

(q)
]

ΓAr
ρ Ân

ν
(q). (3.1)

These two equations can be now combined in such a way that the two-point function mixing back-
ground and quantum fields drops out, to get the BQI2

iΓÂm
µ Ân

ν
(q) = iΓAm

µ An
ν
(q)+2Γ

Ωm
µ A∗ρr

(q)ΓAr
ρ An

ν
(q)− iΓ

Ωm
µ A∗ρr

(q)ΓAr
ρ As

σ
(q)ΓΩn

ν A∗σs
(q). (3.2)

At this point we introduce the gluon propagator as

i∆mn
µν(q) =−iδ mn

[
Pµν(q)∆(q2)+ξ

qµqν

q4

]
; Pµν(q) = gµν −

qµqν

q2 (3.3)

and similarly for the background propagator ∆̂; then, making use of the decomposition

ΓΩm
µ A∗nν

(q) = iδ mn
[

G(q2)gµν +
qµqν

q2 L(q2)
]
, (3.4)

and the relations

ΓAm
µ An

ν
(q) = iδ mnPµν(q)∆−1(q2); ΓÂm

µ Ân
ν
(q) = iδ mnPµν(q)∆̂−1(q2) (3.5)

we arrive at the well known PT-BFM identity

∆(q2) =
[
1+G(q2)

]2
∆̂(q2). (3.6)

The above identity which represents the basic equation from which a gauge invariance truncation
scheme for the Schwinger-Dyson equation of the gluon propagator can be derived [5].

2We are using here implicitly the transversality of the gluon two-point function.
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3.2 Two-point ghost sector in the background Landau gauge

Next, let us now consider the ghost two-point sector in the background Landau gauge. Differen-
tiating the ghost equation (2.13) with respect to a ghost field and a background source we get the
two relations

Γcmc̄n(q) = −iqν
ΓcmA∗nν

(q)

Γc̄nΩm
µ
(q) = qµδ

mn− iqν
ΓΩm

µ A∗nν
(q). (3.7)

On the other hand, differentiation of the anti-ghost equation (2.14) with respect to a gluon anti-field
and an anti-ghost, gives

ΓcmA∗nν
(q) = qνδ

mn− iqµ
ΓΩm

µ A∗nν
(q)

Γcmc̄n(q) = −iqµ
Γc̄aΩm

µ
(q). (3.8)

Contracting the first equation in (3.8) with qν , and making use of the first equation in (3.7), we see
that the dynamics of the ghost sector is entirely encoded in the ΓΩA∗ auxiliary function, since

Γcmc̄n(q) =−iq2
δ

mn−qµqν
ΓΩm

µ A∗nν
(q). (3.9)

Introducing finally the ghost dressing function F and the Lorentz decompositions

iDmn(q2) = iδ mn F(q2)
q2 ; ΓcmA∗nν

(q) = qνδ
mnC(q2); Γc̄mΩn

ν
(q) = qνδ

mnE(q2) (3.10)

with D the ghost propagator, we find that when combining Eqs. (3.9) and (3.4) with the last equation
of (3.7) and (3.8) one gets the identities [9]

C(q2) = E(q2) = F−1(q2); F−1(q2) = 1+G(q2)+L(q2). (3.11)

Now under very general conditions it can be proved that L(0) = 0 so that one would get an
IR divergent ghost dressing function if G(0) =−1. The latter condition reminds of the so-called
Kugo-Ojima confinement criterion [10], and indeed one has the equality [9, 11]

u(q2) = G(q2); Pµν(q)δ mnu(q2) =
qµqν

q2 +
∫

d4x e−iq·(x−y)
〈

T
[(

Dµc
)m

x

(
Dµ c̄

)n
y

]〉
. (3.12)

The identity above is striking for not only it bridges two widely different approaches, namely
the PT-BFM and the local covariant operator formalism, but it does it by linking the two functions
– G and u – that play a central role in their respective frameworks. We conclude by observing
that since the G form factor can be determined to a good approximation from the available lattice
data for the gluon and ghost propagators, Eq. (3.12) allows for a comparison with direct lattice
calculations of u [12], and thus for an overall consistency check of the lattice results [11].

3.3 Three-point auxiliary ghost sector

Consider finally the differentiation of the STI functional (2.5) with respect to the field combina-
tion ccA∗, and of the WI functional (2.9) with respect to the combination ϑcA∗; one gets then the
identities

ΓcmA∗µs
(q)ΓcrAs

µ A∗nν
(r,q, p) = ΓcrA∗µs

(r)ΓcmAs
µ A∗nν

(q,r, p)−Γcmcrc∗s(q,r, p)ΓcsA∗nν
(p)

qµ
ΓcrÂm

µ A∗nν
(r,q, p) = g f rms

ΓcsA∗nν
(p)−g f snm

ΓcrA∗sν
(r), (3.13)

7
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where p+q+ r = 0. These identities can be further simplified by making use of the ghost equation
(2.13) to write [5]

ΓcaA∗bν
(q) = δ

abqνF−1(q2), (3.14)

and therefore

qµ
ΓcrAm

µ A∗nν
(r,q, p) = F−1(r2)rµ

ΓcmAr
µ A∗nν

(q,r, p)−F−1(p2)pνΓcmcrc∗n(q,r, p)

qµ
ΓcrÂm

µ A∗nν
(r,q, p) = g f rmn pνF−1(p2)−g f rnmrνF−1(r2). (3.15)

Though the functions ΓcAA∗ and ΓcÂA∗ might appear exotic at a first sight, in fact they are not:
they correspond to the auxiliary ghost Green’s functions that are bound to appear in the STIs and the
WI satisfied by the background-quantum-quantum gluon vertex ΓÂAA. The latter is the vertex that
appears in the Schwinger-Dyson equation of the PT-BFM gluon propagator, and that plays a pivotal
role for achieving the dynamical generation of a gluon mass [6]. In particular, the identities (3.15)
are instrumental when trying to write this vertex in the most general form consistent with the STIs
and WI it must satisfy3 [13].

4. Application: the QCD effective charge

Until this point the discussion has been on a rather formal level and one might wonder if the BV
formalism (together with the identities it gives rise to) bears any phenomenologically relevance
especially as far as the IR sector of Yang-Mills theories is concerned. The answer to this question
is indeed in the affirmative, and to substantiate this claim we will devote the last part of this talk to
define the notion of a renormalization group (RG) invariant effective charge [15, 16] and determine
it numerically from the available lattice data [17].

4.1 Definition

The RG invariant Yang Mills effective charge represents a quantity that lies at the interface between
perturbative and non-perturbative effects in QCD, providing a continuous interpolation between
two physically distinct regimes: the deep UV, where perturbation theory is reliable, and the deep
IR, where non-perturbative techniques must be employed.

There are two possible RG invariant products which can be used as a basis for the definition
of the effective charge:

• r̂(q2) which exploits the non-renormalization property of the ghost vertex in the Landau
gauge (and therefore is the common choice adopted by lattice practitioners) i.e., the renor-
malization constants identity ZgZ1/2

A Zc = 1;

• d̂(q2) which exploits the fact that PT-BFM quantities satisfy WIs (as opposed to the usual
STIs) which lead to the renormalization constants identity ZgZ1/2

Â
= 1.

3In fact, the first identity in Eq. (3.15) appears already in the classic paper [14], though the authors just proved it at
the one-loop level.
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Specifically, one has

r̂(q2) = g2(µ
2)∆(q2)F2(q2); d̂(q2) = g2(µ

2)∆̂(q2) = g2(µ
2)

∆(q2)
[1+G(q2)]2

(4.1)

where in the last equation the BQI (3.6) was employed. These two dimensionful quantities, that
have a mass dimension of−2, share an important common ingredient, namely the scalar cofactor of
the gluon propagator ∆ which actually sets the scale. The next step is then to extract a dimensionless
quantity that would correspond to the nonperturbative effective charge. Perturbatively, i.e., for
asymptotically large momenta, it is clear that the mass scale is saturated simply by q2, the bare
gluon propagator, and the effective charge is defined by pulling a q−2 out of the corresponding
RG invariant quantity. However, in the case of a dynamically generated gluon mass, the gluon
propagator becomes effectively massive; therefore, particular care is needed in deciding exactly
what combination of mass scales ought to be pulled out. The correct procedure in such a case is
to pull out a massive propagator of the form (in Euclidean space) [q2 +m2(q2)]−1, with m2(q2) the
dynamical gluon mass4 [2]. We then have [16]

αgh(q2) = α(µ
2)[q2 +m2(q2)]∆(q2)F2(q2); α(q2) = α(µ

2)[q2 +m2(q2)]
∆(q2)

[1+G(q2)]2
. (4.2)

In addition, due to the last identity of Eq. (3.11), we can relate the two effective charges
through [16]

α(q2) = αgh(q2)
[

1+
L(q2)

1+G(q2)

]2

. (4.3)

Since L(0) = 0 – and G(0) 6= −1 [11] – we therefore see that not only the two effective charges
coincide in the UV region where they reproduce the perturbative result, but also in the deep IR
where one has α(0) = αgh(0).

4.2 Numerics

From the equations above it is clear that in order to calculate the effective charge we need knowl-
edge of ∆, D (or equivalently F), G, the coupling g and a suitable model for the running of the
gluon mass (for details about the latter we refer to [17]); on the other hand, G (and L) can be ex-
pressed entirely in terms of ∆, D and g by approximating the vertices appearing in their general
expressions, with their tree-level values. One has then

G(q2) =
g2N

3

∫ d4k
(2π)4

[
2+

(k ·q)2

k2q2

]
∆(k)D(k +q)

L(q2) =
g2N

3

∫ d4k
(2π)4

[
1−4

(k ·q)2

k2q2

]
∆(k)D(k +q), (4.4)

with N the number of colors.
The lattice gluon propagator is then taken as an input in our calculations; to determine the

coupling, we instead solve the ghost dressing function Schwinger-Dyson equation for different

4Given that the gluon propagator is finite in the IR, if one insists on factoring out a simple q−2 term, one would
get a completely unphysical coupling, namely, one that vanishes in the deep IR, where QCD is expected to be (and is)
strongly coupled.
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∆
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−
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Figure 1: Left panel: Lattice results for the gluon propagator scalar cofactor ∆ at two different renormal-
ization points µ . Right panel: Comparison between the ghost dressing function F obtained from the ghost
Scwinger-Dyson equation (lines) and the corresponding lattice data (points); as a result of this procedure
one fixes α(µ2) = 0.467 for µ = 2.5 GeV and α(µ2) = 0.309 for µ = 4.0 GeV.

−
G

(q
2
)

q2 [GeV2]

L
(q

2
)

q2 [GeV2]

Figure 2: Left panel: Comparison between the G form factor (changed in sign) obtained from Eq. (4.4)
(continuous lines) and the corresponding lattice data (points) at two different renormalization points. Notice
that the comparison is at most suggestive due to differences in the renormalization procedure; however one
can clearly see that −G saturates in the deep IR to a value much lower than 1 (around 0.6) and so the
confinement criterion of Kugo-Ojima is not satisfied [11]. Right panel: The L form factor determined from
Eq. (4.4) at the same renormalization points. Observe the relative suppression of L with respect to G.

values of g, fixing it to the value at which the best possible agreement with lattice results is reached5

(Fig. 1).
At this point one can calculate G and L; the results are shown in Fig. 2. Notice the relative

suppression of the L form factor as compared to G; thus, based on Eq. (4.3), we expect that even in
the region of intermediate momenta, where the difference reaches its maximum, the two effective
charges defined above will be comparable.

Finally the RG invariant combinations (4.1) can be constructed, and the corresponding effec-
tive charges calculated (Fig. 3). Notice that has expected the differences between the two are in

5Obviously one must check that the coupling so obtained (at the renormalization scale used for the computation) is
fully consistent with known perturbative results. In this case we checked against the 4-loop results of [18] finding very
good agreement [17].
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r̂
(q

2
),

d̂
(q

2
)

q2 [GeV2]

α
g
h
(q

2
),

α
(q

2
)

q2 [GeV2]

Figure 3: Left panel: Comparison between the two RG-invariant products d̂ (solid line) and r̂ (dashed
line); notice that there are two overlapping curves at different µ for each product. Right panel: Comparison
between the QCD effective charge extracted from lattice data: α (red line with circles) and αgh (black line
with squares) for two different IR gluon masses: m0 = 500 MeV (dashed) and m0 = 600 MeV (solid).

general small (around 10%) making the two definitions practically indistinguishable.

5. Conclusions and outlook

In this talk we have shown that when applied to Yang-Mills theories, the BV formalism furnishes
a set of very powerful identities that, when properly combined, allow to extract a great deal of
information regarding the underlying non-perturbative dynamics of the theory.

Future research directions include the application of the BV method to the Maximal Abelian
Gauge and the study of the BFM in the presence of non-trivial backgrounds.

Acknowledgments: We thank the organizers of this Workshop for their warm hospitality and the
stimulating atmosphere of the meeting.
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