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The implementation of the linear covariant gauge on theckafaces a conceptual problem: using
the standard compact discretization, the gluon field is dednwhile the four-divergence of the
gluon field satisfies a Gaussian distribution, i.e. it is unimed. This can give rise to convergence
problems when a numerical implementation is attemptedrderdo overcome this problem, one
can use different discretizations for the gluon field or éd&isan SUK.) group with sufficiently
largeN;. One can also consider small values of the gauge parafeted study numerically the
limiting case of§é — 0, i.e. the Landau gauge. These different approaches wilidneissed here.
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1. Why study thelinear covariant gauge?

Extensive numerical simulations on very large lattid¢$][{] £ B A, B, 6a7@ bhown that, in
three and in four space-time dimensions, the Landau gluon propagattaydispmassive solution
at small momenta and the Landau ghost propagator is essentially free imtbdisdt. (For a re-
cent review and various comments, see respectifely [8][&nd [9].)eTiesslts are not in agreement
with the original Gribov-Zwanziger confinement scenafid [1(, 11] bey itan be explained in the
so-calledrefined Gribov-Zwanziger framewofk3, [L3].

A natural extension of these works in Landau gauge would be to cortbieléinear covariant
gauge, which has the Landau gauge as a limiting case. However, untitlygedbe numerical
gauge fixing for the linear covariant gaude][{4] [[3, 16] was not aatisfy. In Reference J1L7]
we introduced a new implementation of the linear covariant gauge on the latticeotii@s most
problems encountered in earlier implementations. The final goal is to evalveg¢®’&functions
numerically in the linear covariant gauge and, in particular, in the FeynmagegaThis could
allow a nonperturbative evaluation of the gauge-invariant off-shade@s functions of the pinch

technique[[1J8] 39].

2. TheLinear Covariant Gauge on the L attice
In the continuum, the linear covariant gauge is obtained by imposing the gandéion
OuA () = A°(x) , (2.1)

where the real-valued function®(x) are generated using a Gaussian distribution

exp{ zls/ddx% {/\b(x)]z} (2.2)

with width /&. The limiting casef — 0, which impliesAP(x) = 0, yields the Landau gauge.
On the lattice, one can fix the Landau gauge by minimizing the functional

&gw9—=4729 (9" (x+ €y) (2.3)

with respect to the gauge transformatidigx) }. Here,U,(x) are (fixed) link variables ang(x)
are site variables, both belonging to the Sk)(group. The sum is taken over all lattice siteand
directionsp, and Tr indicates trace in color space. By considering a one-parametgosip

g(x, 1) = exp[iryb(x))\ b} (2.4)

of the gauge transformatidy(x) }, one can verify that the stationarity condition for the functional
&.6|U9 implies the (lattice) gauge condition

ZAb — A (x—ey) =0, (2.5)

IHere we indicate withA ? a basis for the SW{) Lie algebra and withy?(x) any real-valued function.
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where
AN (X) = (2i )_1 [Ull (X) o UJ(X)] traceless (2'6)

is the usual lattice discretization for the gluon field. Also, from the secondtian of &{ g[U9Y]
one can obtain a discretized version of the Faddeev-Popov operator

M = —D¥0, (2.7)

where Dﬁb is the covariant derivative. Clearly, for the gauge-fixed configunatiae. for all local
minima of the functionaki g[U Y], this operator is positive-definite. This set of local minima defines
the first Gribov regior® [[Lq, [17].

In Reference[[]7] we have introduced the minimizing functiénal

cclUYg,A] = &6lUY + O Trz Ig(X) A\(X) , (2.8)

which is a natural extension of the Landau functiorfal] (2.3). Herindicates real part. One
should stress that, in the numerical minimization, the link variablg) are gauge-transformed
to g(x)Uu(x)gT(x+ €u), while the/AP(x) functions do not get modified. It is easy to verify, using
again a one-parameter subgrog(x, 7), that this functional leads to the lattice linear covariant
gauge condition

z AD(X) — AD(x—ey) = AP(X) . (2.9)
Note that the above relation and periodic boundary conditions yield

Z/\b(x) =0. (2.10)

This equality must be enforced numerically, within machine precision, whefutiwionsAP(x)
are generated using the Gaussian distribufioh (2.2). Also note that thedser@ation (with respect
to the parameter) of the termig(x) A(x) is purely imaginary and it does not contribute to the
Faddeev-Popov matrix7. Clearly, having a minimizing functional for the linear covariant gauge
implies that the set of its local minima defines the first Gribov reglaand that the corresponding
Faddeev-Popov operato# is positive-definite. This should allow the extension of the Gribov-
Zwanziger approach to the linear covariant gauge. In particular, lhoeld be able to study the
regionQ for the case of a gauge paramefer: 0 and to compare the results with the analytic study
carried out in Referencé [R0] for small valueséof

In order to relate the lattice approach to the continuum, one should[npte &t &écontinuum
relation {2.]1) can be made dimensionless by multiplying both sideddgy Since ind dimensions
and in the SUY.) case one hag = ZNC/(a‘“ng), it is clear that the lattice quantity

M(zzs'%)x%[azgd\b(x)] 212%[5‘ 60N’ (0)] = ;%[A&tt(x>}2 (2.11)

2ltis interesting to note that this functional can be interpreted as a spintggasitonian for the spin variablegx)
with a random interaction given hy, (x) and with a random external magnetic fiéi¢x).
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gives
[a20A°( / dx 2.12
25 at- dg / % & 3 (2.12)
in the formal continuum limit. Thus, the continuum gauge parambtmrresponds to a width
o= 2'\;‘35 (2.13)

for the Gaussian distribution on the lattice and onlyfo& 2N does one have = \/E

3. Numerical Simulations

The functionalsi cg[UY,9,A] — see Egs[(2]3) anfl (2.8) — is linear in the gauge transforma-
tions{g(x)}. Thus, the gauge-fixing algorithms usually employed in the Landau EdsB34238]
can be used also for the linear covariant gauge and, in principle, thericahgauge fixing should
not be a problem for this gauge. Nevertheless, as explained in the éthstngy formulation of
the linear covariant gauge on the lattice faces a conceptual problenedirttie gluon field\, (x),
usually defined as in Equatiop (R.6), is bounded while the funciidiis) satisfy a Gaussian dis-
tribution [see Equation[(3.2)] and are thus unbounded. Then, it is cleaEth [2.p) cannot be
satisfied ifAP(x) is too large [2B]. As a consequence, one has to deal with convergeoiclems
when numerically imposing the linear covariant gauge condition. Also, thed#ems become
more severe as the widtjf€ of the Gaussian distribution becomes larger and/or as the lattice vol-
ume becomes larger. On the lattice, as shown above, the widththe Gaussian distribution is
given byo = /2N:£/B. Thus, these convergence problems are more severe also for smed valu
of the couplingB. In particular, for < 2N; the lattice widtho is larger than the continuum width
JVE.

In Referenceq[1 1, P5] we have presented tests of convergetivemimerical gauge fixing in
the SU(2) case for relatively small lattice volumg@s+= 4 and values of up to 0.5. [Recall that for
B =4onehaw = \/f in the SU(2) case.] We have also checked that the quabititp®) p?, where
Dy (p?) is the longitudinal gluon propagator, is approximately constant for allscesesidered, as
predicted by Slavnov-Taylor identities. This verification failed in previomsrniulations of the
lattice linear covariant gaugg ]15,16].

In order to overcome the convergence problems discussed aboves aidebto simulate at
lattice couplingB smaller than 4 in the SU(2) case, we considered different discretizatidhe o
gluon field. In particular, we used the angle (or logarithmic) projectioh ] the stereographic
projection [2}] (for a slightly different implementation of the stereographajgation see also
[B9]). Note that, in the latter case, the gluon field is unbounded even foite fattice spacing.

Our results[[1J7[ 25] clearly show that the angle projection is already aroiraprent compared to
the standard discretization and that the best convergence is obtainedisihg the stereographic
projection. In Referenceg J1,]25] we also presented preliminarytsefsu the transverse gluon
propagator using the stereographic projection. From these resultkeany sees that, as in Landau
gauge, the transverse propagator is more infrared suppressedhgHatiice volume increases. At
the same time, for a fixed volume, this propagator is also more infrared suppressed when the



Linear Covariant Gauge Attilio Cucchieri

gauge parametéy increases. The latter result is in agreement with Referdnge [15]. Guidsh
however, stress that the stereographic projection cannot be extenged\;:) groups withN; > 2.
Thus, in the SU(3) case one should probably rely on the logarithmic prajectio

Finally, one should note that, in the SU(2) case, the value \/? i.e. 3 =4, corresponds
to a lattice spacing =~ 0.001 fm. On the contrary, in the SU(3) case, one bias \/3 for B =6,
corresponding t@ = 0.102 fm. Also, for a fixed tHooft couplingiN., we havep 0 N2 and
o 0 1/1/Nc. This suggests that simulations for the linear covariant gauge are eagiersty(\;)
case for largé\.. In Reference[[49] we tested this hypothesis by simulating the SU(2),)3ld¢B
SU(4) cases for a gauge paramefet 1 and lattice volumes up %6 = 32* for several values of
the couplingB. We find that the convergence problems are indeed reduced whenrttimenof
colorsN; is larger.

4, TheLimité —0

In the continuum, the Landau gauge condition is defined by consideringstted Baddeev-
Popov Lagrangian for the linear covariant gauge and by taking the §imit0. On the contrary,
on the lattice, this gauge has been studied without considering this limit, but bygimgpdirectly
the gauge condition

Ou A (x) =0, (4.1)
which is usually called the Lorenz gauge. The latter gauge condition is fixedmcally by min-
imizing the functional [(2]3). Using our implementation of the linear covariangeait seems
natural to study the Landau gauge by numerically considering the §imit O, in analogy with
the definition in the continuum. One should also note that, in this limit, the width of theszau
distribution (2.R) goes to zero and, therefore, the convergence prshliscussed above should be
reduced — or eliminated — even for large lattice volumes angBfgalues in the scaling region.
Moreover, since in the limi§ — 0 the Gaussian distribution becomes a Dirac delta fundi@x),
this limit can be studied numerically by using different approximations of the tieittion.

Here we consider three possible sequences of functions, labelleddraragtein, leading to
a delta function in the limitr — 0, i.e.

1. the Gaussian distribution

e—/\z/(Zaé)
fo(N) = ———, (4.2)
\/2ma
2. the Triangle distribution
a=A/ar)  forA € [0,av]
fr(n) = ¢ B2 forA e [~ar,0] (4.3)
0 forA ¢ [—ar, ar]

3. and the Rectangular distribution

{ L forA€[-ar/2,ar/2]
fR(A) = § & | o
0 forA¢[—ar/2,ar/2|
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Note that the last two distributions are bounded. Also note that the aveshgeofA? using these
three distributions is respectively given big, a2 /6 anda3/12. Thus, by setting

I _ R
aG_\/é_\/TZ (4.5)

we have three different distributions with the same moment of inertia.

We have done exploratory tests considering, in the SU(2) case, the laiticeeN = 32
at B = 2.2. For the gauge-fixing parametemswe used the valuegg ~ 0.1443380.0288674
and 000288674 for the Gaussian distributian; ~ 0.3535530.0707107 and @0707107 for the
triangle distribution andrgr = 0.5,0.1 and 001 for the rectangular distribution. Note that these
values satisfy the relations in E. (4.5). Also, the values®torrespond to the continuum values
& ~0.01145844.583310* and 4583310, respectively. For comparison, we have also done
simulations directly af = 0, i.e. imposing the Lorenz conditiop (#.1). Results for the longitudinal
D.(p?) and the transversBr (p?) gluon propagators are shown in Fifs[J1-4. One sees that the
limit a — 0 is smoothly approached in the gluon sector and that the results are idéepenthe
considered distribution. In particular, it is clear in Figg]1-2 that the thieat@redictionD, (p?) =
a?/p?, with 02 = a2 = a3/12, is satisfied by the data obtained with these three distributions. At
the same time, a value a@f? = aé ~ 0.144338 ~ 0.02 (see Fig[]4), which corresponds to the
continuum valu€ ~ 0.01, already seems to give results in quantitative agreement with the Landau
case.

5. Conclusions

We have found a minimizing functional for the linear covariant gauge thasimple general-
ization of the Landau-gauge functional. This approach solves modepnstencountered in earlier
implementations. Simulations for large lattice volum@sjalues in the scaling region and a large
gauge parameter can probably be done with SU(3) and SU(4) using the logarithmic projection,
allowing a non-perturbative study of Green'’s functions. Finally, ther@ggh to the limiting case
¢ — 0, i.e. the Landau gauge, can also be studied numerically. Here we hagétigated this limit
considering three different distributions defining the gauge condition.
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