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The implementation of the linear covariant gauge on the lattice faces a conceptual problem: using

the standard compact discretization, the gluon field is bounded, while the four-divergence of the

gluon field satisfies a Gaussian distribution, i.e. it is unbounded. This can give rise to convergence

problems when a numerical implementation is attempted. In order to overcome this problem, one

can use different discretizations for the gluon field or consider an SU(Nc) group with sufficiently

largeNc. One can also consider small values of the gauge parameterξ and study numerically the

limiting case ofξ → 0, i.e. the Landau gauge. These different approaches will bediscussed here.
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1. Why study the linear covariant gauge?

Extensive numerical simulations on very large lattices [1, 2, 3, 4, 5, 6, 7] have shown that, in
three and in four space-time dimensions, the Landau gluon propagator displays a massive solution
at small momenta and the Landau ghost propagator is essentially free in the same limit. (For a re-
cent review and various comments, see respectively [8] and [9].) These results are not in agreement
with the original Gribov-Zwanziger confinement scenario [10, 11] but they can be explained in the
so-calledrefined Gribov-Zwanziger framework[12, 13].

A natural extension of these works in Landau gauge would be to considerthe linear covariant
gauge, which has the Landau gauge as a limiting case. However, until recently, the numerical
gauge fixing for the linear covariant gauge [14, 15, 16] was not satisfactory. In Reference [17]
we introduced a new implementation of the linear covariant gauge on the lattice that solves most
problems encountered in earlier implementations. The final goal is to evaluate Green’s functions
numerically in the linear covariant gauge and, in particular, in the Feynman gauge. This could
allow a nonperturbative evaluation of the gauge-invariant off-shell Green’s functions of the pinch
technique [18, 19].

2. The Linear Covariant Gauge on the Lattice

In the continuum, the linear covariant gauge is obtained by imposing the gaugecondition

∂µAb
µ(x) = Λb(x) , (2.1)

where the real-valued functionsΛb(x) are generated using a Gaussian distribution

exp

{

− 1
2ξ

∫

ddx∑
b

[

Λb(x)
]2
}

(2.2)

with width
√

ξ . The limiting caseξ → 0, which impliesΛb(x) = 0, yields the Landau gauge.
On the lattice, one can fix the Landau gauge by minimizing the functional

ELG[U
g] =−Tr∑

µ,x
g(x)Uµ(x)g

†(x+eµ) (2.3)

with respect to the gauge transformations{g(x)}. Here,Uµ(x) are (fixed) link variables andg(x)
are site variables, both belonging to the SU(Nc) group. The sum is taken over all lattice sitesx and
directionsµ, and Tr indicates trace in color space. By considering a one-parameter subgroup1

g(x,τ) = exp
[

iτγb(x)λ b
]

(2.4)

of the gauge transformation{g(x)}, one can verify that the stationarity condition for the functional
ELG[Ug] implies the (lattice) gauge condition

∑
µ

Ab
µ(x) − Ab

µ(x−eµ) = 0 , (2.5)

1Here we indicate withλ b a basis for the SU(Nc) Lie algebra and withγb(x) any real-valued function.

2



P
o
S
(
F
a
c
e
s
Q
C
D
)
0
2
6

Linear Covariant Gauge Attilio Cucchieri

where

Aµ(x) = (2i )−1 [Uµ(x)−U†
µ(x)

]

traceless
(2.6)

is the usual lattice discretization for the gluon field. Also, from the second variation of ELG[Ug]

one can obtain a discretized version of the Faddeev-Popov operator

M
ab = −Dab

µ ∂µ , (2.7)

whereDab
µ is the covariant derivative. Clearly, for the gauge-fixed configurations, i.e. for all local

minima of the functionalELG[Ug], this operator is positive-definite. This set of local minima defines
the first Gribov regionΩ [10, 11].

In Reference [17] we have introduced the minimizing functional2

ELCG[U
g,g,Λ] = ELG[U

g] + ℜ Tr∑
x

ig(x)Λ(x) , (2.8)

which is a natural extension of the Landau functional (2.3). Hereℜ indicates real part. One
should stress that, in the numerical minimization, the link variablesUµ(x) are gauge-transformed
to g(x)Uµ(x)g†(x+eµ), while theΛb(x) functions do not get modified. It is easy to verify, using
again a one-parameter subgroupg(x,τ), that this functional leads to the lattice linear covariant
gauge condition

∑
µ

Ab
µ(x) − Ab

µ(x−eµ) = Λb(x) . (2.9)

Note that the above relation and periodic boundary conditions yield

∑
x

Λb(x) = 0 . (2.10)

This equality must be enforced numerically, within machine precision, when thefunctionsΛb(x)
are generated using the Gaussian distribution (2.2). Also note that the second variation (with respect
to the parameterτ) of the term ig(x)Λ(x) is purely imaginary and it does not contribute to the
Faddeev-Popov matrixM . Clearly, having a minimizing functional for the linear covariant gauge
implies that the set of its local minima defines the first Gribov regionΩ and that the corresponding
Faddeev-Popov operatorM is positive-definite. This should allow the extension of the Gribov-
Zwanziger approach to the linear covariant gauge. In particular, one should be able to study the
regionΩ for the case of a gauge parameterξ 6= 0 and to compare the results with the analytic study
carried out in Reference [20] for small values ofξ .

In order to relate the lattice approach to the continuum, one should note [16] that the continuum
relation (2.1) can be made dimensionless by multiplying both sides bya2g0. Since ind dimensions
and in the SU(Nc) case one hasβ = 2Nc/(a4−dg2

0), it is clear that the lattice quantity

β/(2Nc)

2ξ ∑
x,b

[

a2g0Λb(x)
]2

=
1

2σ2 ∑
x,b

[

a2g0Λb(x)
]2

=
1

2σ2 ∑
x,b

[

Λb
latt(x)

]2
(2.11)

2It is interesting to note that this functional can be interpreted as a spin-glassHamiltonian for the spin variablesg(x)
with a random interaction given byUµ (x) and with a random external magnetic fieldΛ(x).
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gives
1

2ξ
1

a4−dg2
0

∫

ddx
ad ∑

b

[

a2g0Λb(x)
]2

=
1

2ξ

∫

ddx∑
b

[

Λb(x)
]2

(2.12)

in the formal continuum limit. Thus, the continuum gauge parameterξ corresponds to a width

σ =

√

2Ncξ
β

(2.13)

for the Gaussian distribution on the lattice and only forβ = 2Nc does one haveσ =
√

ξ .

3. Numerical Simulations

The functionalELCG[Ug,g,Λ] — see Eqs. (2.3) and (2.8) — is linear in the gauge transforma-
tions{g(x)}. Thus, the gauge-fixing algorithms usually employed in the Landau case [21, 22, 23]
can be used also for the linear covariant gauge and, in principle, the numerical gauge fixing should
not be a problem for this gauge. Nevertheless, as explained in the Abstract, any formulation of
the linear covariant gauge on the lattice faces a conceptual problem. Indeed, the gluon fieldAa

µ(x),
usually defined as in Equation (2.6), is bounded while the functionsΛb(x) satisfy a Gaussian dis-
tribution [see Equation (2.2)] and are thus unbounded. Then, it is clear that Eq. (2.9) cannot be
satisfied ifΛb(x) is too large [24]. As a consequence, one has to deal with convergenceproblems
when numerically imposing the linear covariant gauge condition. Also, these problems become
more severe as the width

√

ξ of the Gaussian distribution becomes larger and/or as the lattice vol-
ume becomes larger. On the lattice, as shown above, the widthσ of the Gaussian distribution is
given byσ =

√

2Ncξ/β . Thus, these convergence problems are more severe also for small values
of the couplingβ . In particular, forβ < 2Nc the lattice widthσ is larger than the continuum width
√

ξ .
In References [17, 25] we have presented tests of convergence ofthe numerical gauge fixing in

the SU(2) case for relatively small lattice volumes,β = 4 and values ofξ up to 0.5. [Recall that for
β = 4 one hasσ =

√

ξ in the SU(2) case.] We have also checked that the quantityDL(p2)p2, where
DL(p2) is the longitudinal gluon propagator, is approximately constant for all cases considered, as
predicted by Slavnov-Taylor identities. This verification failed in previous formulations of the
lattice linear covariant gauge [15, 16].

In order to overcome the convergence problems discussed above and be able to simulate at
lattice couplingβ smaller than 4 in the SU(2) case, we considered different discretizations of the
gluon field. In particular, we used the angle (or logarithmic) projection [26]and the stereographic
projection [27] (for a slightly different implementation of the stereographic projection see also
[28]). Note that, in the latter case, the gluon field is unbounded even for a finite lattice spacinga.
Our results [17, 25] clearly show that the angle projection is already an improvement compared to
the standard discretization and that the best convergence is obtained when using the stereographic
projection. In References [17, 25] we also presented preliminary results for the transverse gluon
propagator using the stereographic projection. From these results one clearly sees that, as in Landau
gauge, the transverse propagator is more infrared suppressed whenthe lattice volume increases. At
the same time, for a fixed volumeV, this propagator is also more infrared suppressed when the
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gauge parameterξ increases. The latter result is in agreement with Reference [15]. One should,
however, stress that the stereographic projection cannot be extendedto SU(Nc) groups withNc > 2.
Thus, in the SU(3) case one should probably rely on the logarithmic projection.

Finally, one should note that, in the SU(2) case, the valueσ =
√

ξ , i.e. β = 4, corresponds
to a lattice spacinga≈ 0.001 fm. On the contrary, in the SU(3) case, one hasσ =

√

ξ for β = 6,
corresponding toa = 0.102 fm. Also, for a fixed t’Hooft couplingg2

0Nc, we haveβ ∝ N2
c and

σ ∝
√

1/Nc. This suggests that simulations for the linear covariant gauge are easier inthe SU(Nc)
case for largeNc. In Reference [29] we tested this hypothesis by simulating the SU(2), SU(3) and
SU(4) cases for a gauge parameterξ = 1 and lattice volumes up toV = 324 for several values of
the couplingβ . We find that the convergence problems are indeed reduced when the number of
colorsNc is larger.

4. The Limit ξ → 0

In the continuum, the Landau gauge condition is defined by considering the usual Faddeev-
Popov Lagrangian for the linear covariant gauge and by taking the limitξ → 0. On the contrary,
on the lattice, this gauge has been studied without considering this limit, but by imposing directly
the gauge condition

∂µ Ab
µ(x) = 0, (4.1)

which is usually called the Lorenz gauge. The latter gauge condition is fixed numerically by min-
imizing the functional (2.3). Using our implementation of the linear covariant gauge, it seems
natural to study the Landau gauge by numerically considering the limitξ → 0, in analogy with
the definition in the continuum. One should also note that, in this limit, the width of the Gaussian
distribution (2.2) goes to zero and, therefore, the convergence problems discussed above should be
reduced — or eliminated — even for large lattice volumes and forβ values in the scaling region.
Moreover, since in the limitξ → 0 the Gaussian distribution becomes a Dirac delta functionδ (Λ),
this limit can be studied numerically by using different approximations of the deltafunction.

Here we consider three possible sequences of functions, labelled by a parameterα , leading to
a delta function in the limitα → 0, i.e.

1. the Gaussian distribution

fG(Λ) =
e−Λ2/(2α2

G)

√

2πα2
G

, (4.2)

2. the Triangle distribution

fT(Λ) =



















(1−Λ/αT)
αT

forΛ ∈ [0,αT ]

(1+Λ/αT)
αT

forΛ ∈ [−αT ,0]

0 forΛ /∈ [−αT ,αT ]

(4.3)

3. and the Rectangular distribution

fR(Λ) =

{ 1
αR

forΛ ∈ [−αR/2,αR/2]

0 forΛ /∈ [−αR/2,αR/2]
. (4.4)

5



P
o
S
(
F
a
c
e
s
Q
C
D
)
0
2
6

Linear Covariant Gauge Attilio Cucchieri

Note that the last two distributions are bounded. Also note that the average value ofΛ2 using these
three distributions is respectively given byα2

G, α2
T/6 andα2

R/12. Thus, by setting

αG =
αT√

6
=

αR√
12

(4.5)

we have three different distributions with the same moment of inertia.
We have done exploratory tests considering, in the SU(2) case, the lattice volumeV = 324

at β = 2.2. For the gauge-fixing parametersα we used the valuesαG ≈ 0.144338,0.0288674
and 0.00288674 for the Gaussian distribution,αT ≈ 0.353553,0.0707107 and 0.00707107 for the
triangle distribution andαR = 0.5,0.1 and 0.01 for the rectangular distribution. Note that these
values satisfy the relations in Eq. (4.5). Also, the values ofαG correspond to the continuum values
ξ ≈ 0.0114584,4.583310−4 and 4.583310−6, respectively. For comparison, we have also done
simulations directly atξ = 0, i.e. imposing the Lorenz condition (4.1). Results for the longitudinal
DL(p2) and the transverseDT(p2) gluon propagators are shown in Figs. 1–4. One sees that the
limit α → 0 is smoothly approached in the gluon sector and that the results are independent of the
considered distribution. In particular, it is clear in Figs. 1–2 that the theoretical predictionDL(p2) =

σ2/p2, with σ2 = α2
G = α2

R/12, is satisfied by the data obtained with these three distributions. At
the same time, a value ofσ2 = α2

G ≈ 0.1443382 ≈ 0.02 (see Fig. 4), which corresponds to the
continuum valueξ ≈ 0.01, already seems to give results in quantitative agreement with the Landau
case.

5. Conclusions

We have found a minimizing functional for the linear covariant gauge that is asimple general-
ization of the Landau-gauge functional. This approach solves most problems encountered in earlier
implementations. Simulations for large lattice volumes,β values in the scaling region and a large
gauge parameterξ can probably be done with SU(3) and SU(4) using the logarithmic projection,
allowing a non-perturbative study of Green’s functions. Finally, the approach to the limiting case
ξ → 0, i.e. the Landau gauge, can also be studied numerically. Here we have investigated this limit
considering three different distributions defining the gauge condition.

Acknowledgments

We thank Matthieu Tissier for helpful discussions and the organizers ofThe Many Faces of
QCD for a very pleasant and stimulating workshop. This work has been partiallysupported by the
Brazilian agencies FAPESP, CNPq and CAPES. In particular, support from FAPESP (under grant
# 2009/50180-0) is acknowledged.

References

[1] I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preusskerand A. Sternbeck,The Landau gauge gluon
and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoSLAT2007 (2007) 290.

[2] A. Cucchieri and T. Mendes,What’s up with IR gluon and ghost propagators in Landau gauge? A
puzzling answer from huge lattices, PoSLAT2007 (2007) 297.

6



P
o
S
(
F
a
c
e
s
Q
C
D
)
0
2
6

Linear Covariant Gauge Attilio Cucchieri

 0.0007

 0.00075

 0.0008

 0.00085

 0.0009

 0.00095

 0.001

 0  0.5  1  1.5  2  2.5  3  3.5  4

p2  D
L(

p2 )

p2

Figure 1: Plot of p2DL(p2) as a function ofp2 (in lattice units) forαR = 0.1 (+), αT ≈ 0.0707107 (�) and
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