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1. Introduction

One of the most crucial features of QCD is the dynamical generation of a quark mass and
the related phenomenon of chiral symmetry breaking (CSB). The realizationof these characteristic
QCD phenomena is intimately connected with the non-perturbative nature of theinfrared sector
of the theory; therefore, their study in the continuum is best studied within the inherently non-
perturbative formalism based on the Schwinger-Dyson Equations (SDE)[1, 2].

It is well known that the non-linear integral equation governing the behavior of quark prop-
agator (gap equation) displays a very rich structure. In particular, the existence or not of non-
trivial solutions for this equation depends crucially on the strength of its kernel, which is largely
determined by the non-perturbative behavior of the fully dressed gluon propagator and the quark-
gluon vertex [1]. Actually, the quark-gluon vertex plays an absolutely essential role, introducing
to the gap equation a dependence on the ghost dressing function [3] andthe quark-ghost scattering
amplitude [1]; as we will see, this dependence turns out to be numerically crucial for obtaining
phenomenologically acceptable quark masses.

In this talk, we will show how it is possible to obtain physically relevant solutionsfor the quark
dynamical mass using the infrared finite ingredients obtained from the lattice, i.e., a non-vanishing
gluon propagator and a non-enhanced ghost sector. To do that, we build a truncation scheme for the
quark SDE, supplemented with three non-perturbative ingredients: (i) thegluon propagator, (ii) the
ghost dressing function obtained from large-volume lattice simulations [4, 5], and (iii) the “one-
loop dressed” approximate version of the scalar form factor of the quark-ghost scattering kernel [1].
In addition, the results for the fermion masses in the adjoint representation are briefly discussed.

2. The gap equation

Let us start by defining some basic quantities that are important for the analysis of the CSB.
The quantity that will be on the focus of our attention is the full quark propagator; in Minkowski
space, its inverse has the general form given by

S−1(p) = /p−m−Σ(p) = A(p2)/p−B(p2) , (2.1)

wherem is the bare current quark mass, andΣ(p) the quark self-energy. Notice that the self-
energy can be decomposed in terms of a Dirac vector component,A(p2), and a scalar com-
ponent,B(p2), which allow us to define the dynamical quark mass function as being the ratio
M (p2) = B(p2)/A(p2).

As we are interested in generating the quark mass exclusively through dynamical effects, we
consider the case without explicit CSB, where the bare massm= 0. Then, it is easy to see that
the quark propagator will develop a dynamical quark mass only if the scalarcomponent,B(p2), is
different from zero [6].

The diagrammatic representation ofS−1(p) is shown in Fig.1; using the same convention of
momenta flow as indicated in the figure, the gap equation can be written as

S−1(p) = /p−Crg
2
∫

k
Γ[0]

µ S(k)Γν(−p,k,q)∆µν(q) , (2.2)
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whereq≡ p− k,
∫

k ≡ µ2ε(2π)−d ∫ ddk, with d = 4− ε the dimension of space-time.Cr is the
Casimir eigenvalue of the given fermion representation, where we setr = F for the fundamental,
andr= A for the adjoint. Specifically, for the gauge groupSU(3), we haveCA = 3 andCF = 4/3.

p
−→

p

→

p

= +

( )

−→

( )

−1 −1

−→

k

q = p − k
−→

µ
ν

→

p

Figure 1: Diagrammatic representation of the quark SDE (gap equation).

According to Eq. (2.2), the quark propagator,S(p), is dynamically determined in terms of
an integral equation involving itself, the full gluon propagator, to be denoted by ∆µν(q), the full
fermion-gluon vertexΓν(−p,k,q), and its tree level counterpartΓ[0]

µ = γµ .
In the Landau gauge the full gluon propagator,∆µν(q), has the form

∆µν(q) =−i

[

gµν −
qµqν

q2

]

∆(q2) , (2.3)

where the non-perturbative behavior of the scalar factor∆(q2) has been studied in great detail in
the continuum [7, 8], and in the lattice simulations [4, 5].

2.1 The full quark-gluon vertex

In principle, the fully-dressed quark-gluon vertex,Γν , is determined from its own SDE, which
contains a number of (unknown) multiparticle kernels, characteristic of the so-called “skeleton
expansion”. Dealing with such an equation is technically very difficult; therefore, the standard way
to obtain information about this vertex is to use a gauge-technique Ansatz forit [10]. The general
idea of this method is to express the longitudinal part of a vertex in terms of the various quantities
appearing in the fundamental Ward identity or Slavnov-Taylor identity (STI)that it satisfies.

In the case of the quark-gluon vertex, the general Lorentz decomposition for the longitudinal
part of Γν involves four different form factors. All these form factors contain an explicit depen-
dence to both the ghost dressing function and the “quark-ghost scattering kernel” which, in turn,
also has a rich tensorial structure. Specifically, the vertexΓµ(p1, p2, p3) satisfies the following
STI [9]

pµ
3 Γµ(p1, p2, p3) = F(p3)[S

−1(−p1)H(p1, p2, p3)−H(p2, p1, p3)S
−1(p2)] , (2.4)

whereH(p1, p2, p3) is the quark-ghost scattering kernel represented in the Fig. 2, andF(p3) is the
ghost dressing function which is related to the full ghost propagator byD(p3) = iF (p3)/p2

3.
The kernelH(p1, p2, p3) and the “conjugate”H(p2, p1, p3) have the following Lorentz decom-

position [11] (note the changep1↔ p2 in the arguments of the latter)

H(p1, p2, p3) = X0I+X1/p1+X2/p2+X3σ̃µν pµ
1 pν

2 ,

H(p2, p1, p3) = X0I−X2/p1−X1/p2+X3σ̃µν pµ
1 pν

2 , (2.5)

3
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H(p1, p2, p3) = p1

p2

p3

Figure 2: The fermion-ghost scattering kernelH(p1, p2, p3).

where the form factorsXi are functions of the momenta,Xi =Xi(p1, p2, p3), and we use the notation
Xi(p, r,q)≡ Xi(r, p,q) andσ̃µν ≡

1
2[γµ ,γν ].

The most general Lorentz decomposition for the longitudinal part of the vertex Γµ(p1, p2, p3)

can be written as [11]

Γµ(p1, p2, p3) = L1γµ +L2(/p1−/p2)(p1− p2)µ +L3(p1− p2)µ +L4σ̃µν(p1− p2)
ν , (2.6)

whereLi are the form factors, whose dependence on the momenta has been suppressed, in order
to keep a compact notation,i.e., Li = Li(p1, p2, p3). Notice that the tree level expression forΓ[0]

µ is

recovered settingL1 = 1 andL2 = L3 = L4 = 0; then,Γ[0]
µ = γµ .

Contracting Eq. (2.6) withpµ
3 , we have

pµ
3 Γµ(p1, p2, p3) = (p2

2− p2
1)L3I+[(p2

2− p2
1)L2−L1]/p1− [(p2

2− p2
1)L2+L1]/p2−2L4σ̃µν pµ

1 pν
2 .

(2.7)
In addition, substituting the standard decomposition ofS−1(p), given in Eq. (2.1), and the

expression ofH(p1, p2, p3) given by Eq. (2.5) into Eq. (2.4), we find that the rhs of Eq. (2.7) can
be also expressed in terms of the functionsA, B andXi ’s. Then, it is relatively straightforward to
demonstrate that theLi ’s may be expressed as [1]

L1 =
F(p3)

2

{

A(p1)[X0+(p2
1− p1·p2)X3]+A(p2)[X0+(p2

2− p1·p2)X3]

}

+
F(p3)

2

{

B(p1)(X1+X2)+B(p2)(X1+X2)

}

;

L2 =
F(p3)

2(p2
2− p2

1)

{

A(p1)[(p
2
1+ p1·p2)X3−X0]−A(p2)[(p

2
2+ p1·p2)X3−X0]

}

+
F(p3)

2(p2
2− p2

1)

{

B(p1)(X2−X1)+B(p2)(X1−X2)

}

;

L3 = −
F(p3)

p2
2− p2

1

{

A(p1)
(

p2
1X1+ p1·p2X2

)

−A(p2)
(

p2
2X1+ p1·p2X2

)

+B(p1)X0−B(p2)X0

}

;

L4 =
F(p3)

2

{

A(p1)X2−A(p2)X2+B(p1)X3−B(p2)X3

}

. (2.8)

It is interesting to notice that setting in Eq. (2.8)X0 = X0 = 1 andXi = Xi = 0, for i ≥ 1, and
F(p3) = 1, we obtain the following expressions

L1 =
A(p1)+A(p2)

2
, L3 =

B(p1)−B(p2)

p2
1− p2

2

,

L2 =
A(p1)−A(p2)

2(p2
1− p2

2)
, L4 = 0 (2.9)

4
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which give rise to the so-called Ball-Chiu (BC) vertex [12],

Γµ
BC(p1, p2, p3) =

A(p1)+A(p2)

2
γµ

+
(p1− p2)

µ

p2
1− p2

2

{

[A(p1)−A(p2)]
/p1−/p2

2
+[B(p1)−B(p2)]

}

, (2.10)

which is widely employed in the literature for studies of CSB [6].
In this work, we go beyond the Abelian version of the quark-gluon vertexexpressed by

Eq. (2.10), and we consider the case where only the scalar component of the quark-ghost scat-
tering kernel is non-vanishingi.e. X0 6= 0 whileXi = Xi = 0, for i ≤ 1. In this limit, the expressions
of Eq. (2.8) reduce to

L1 = F(p3)X0(p3)

[

A(p1)+A(p2)

2

]

, L3 = F(p3)X0(p3)

[

B(p1)−B(p2)

p2
1− p2

2

]

,

L2 = F(p3)X0(p3)

[

A(p1)−A(p2)

2(p2
1− p2

2)

]

, L4 = 0. (2.11)

According the above expression, the form factorsLi ’s display an explicit dependence on the
productF(p3)X0(p3) which contains information about the infrared behavior of the ghost propa-
gator [1]. Therefore, the information about the ghost sector enters intothe gap equation Eq. (2.2)
through the quark-gluon vertex of Eq. (2.6).

Since the transverse part of the quark-gluon vertex is not constrainedby the STI given by
Eq. (2.4), it is possible to add a transverse part to the vertex without violating the this important
identity. The so-called Curtis and Pennington (CP) vertex [13], to be denoted byΓµ

CP, modifiesΓµ
BC

by an identically conserved term [6], such that

Γµ
CP(p1, p2, p3) = Γµ

BC(p1, p2, p3)+Γµ
T(p1, p2, p3) , (2.12)

with

Γµ
T(p1, p2, p3) =

γµ(p2
2− p2

1)− (p1− p2)
µ(/p1+/p2)

2d(p1, p2)
[A(p2)−A(p1)] , (2.13)

where

d(p1, p2) =
1

p2
1+ p2

2

{

(p2
2− p2

1)
2+

[

B2(p2)

A2(p2)
+

B2(p1)

A2(p1)

]2
}

. (2.14)

In analogy to what happens in the case of the BC vertex, the ghost effects due toF(p3) and
the quark-ghost scattering kernelX[1]

0 (p3) will be incorporated into the CP vertex through a simple

multiplication of its tensorial structure by the factorF(p3)X
[1]
0 (p3). Therefore, within our ap-

proximation, the “ghost-improved” versions of the vertex, to be denoted byΓµ
BC(p1, p2, p3) and

Γµ
CP(p1, p2, p3), respectively, can be written as

Γµ
BC(p1, p2, p3) = F(p3)X

[1]
0 (p3)Γ

µ
BC(p1, p2, p3) ,

Γµ
CP(p1, p2, p3) = F(p3)X

[1]
0 (p3)Γ

µ
CP(p1, p2, p3) . (2.15)

5
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Notice that the above equation in the limit ofX[1]
0 (q) = 1 reduces to the vertex employed in Ref. [3].

Substituting the vertexΓµ
BC(p1, p2, p3) given by Eqs. (2.6) and (2.11) into the gap equation

(2.2), and definingp1 =−p, p2 = k, and p3 = q, we arrive at the following coupled system for
A(p2) andB(p2)

A(p2) = 1+Crg
2Z−1

c

∫

k

K0(p−k)
A2(k2)k2+B2(k2)

K
BC

A (k, p) , (2.16)

B(p2) = Crg
2Z−1

c

∫

k

K0(p−k)
A2(k2)k2+B2(k2)

K
BC

B (k, p) , (2.17)

where the kernelK0(q) corresponds to the part that is not altered by the tensorial structure of the
quark-gluon vertex, namely

K0(q) = ∆(q)F(q)X[1]
0 (q) , (2.18)

while the parts that are affected,K BC
A (k, p) andK BC

B (k, p), are given by [14]

K
BC

A (k, p) =
A(k2)

2p2 [A(k2)+A(p2)] [3p·k−2h(p,k)]−2B(k2)∆B(k2, p2)
h(p,k)

p2

−A(k2)∆A(k2, p2)

[

k2−
(k·p)2

p2 +2
k·p
p2 h(p,k)

]

, (2.19)

K
BC

B (k, p) =
3
2

B(k2)[A(k2)+A(p2)]+2
[

B(k2)∆A(k2, p2)−A(k2)∆B(k2, p2)
]

h(p,k) ,

where

h(p,k)≡

[

k2p2− (k·p)2
]

q2 , (2.20)

and

∆A(k2, p2)≡
A(k2)−A(p2)

k2− p2 , ∆B(k2, p2)≡
B(k2)−B(p2)

k2− p2 . (2.21)

Similarly, the effect of the vertexΓµ
CP(p1, p2, p3) is to replace the kernelsK BC

A (k, p) and
K BC

B (k, p), appearing in Eq. (2.16) and (2.17), byK CP
A (k, p) andK CP

B (k, p), respectively, where

K
CP

A (k, p) = K
BC

A (k, p)+
3k · p
2p2 A(k2)∆A(k2, p2)

(k2− p2)2

d(k, p)
,

K
CP

B (k, p) = K
BC

B (k, p)+
3
2

B(k2)∆A(k2, p2)
(k2− p2)2

d(k, p)
. (2.22)

3. The non-perturbative ingredients from the lattice

As we have seen in Eq. 2.18, the gap equation given in Eqs. (2.16) and (2.17) depends on the
nonperturbative form of the three basic Green’s functions, namely∆(q), F(q), andX0(q). There-
fore, in order to proceed with the analysis, we use for∆(q) andF(q) the recent lattice data obtained
by [4], and shown in Fig. 3.

We clearly see that both lattice results for∆(q) andF(q) are infrared finite. This characteristic
feature has been long associated with a purely non-perturbative effect, namely the dynamical gen-
eration of an effective (momentum-dependent) gluon mass [15, 2, 16], whose presence saturates

6
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Figure 3: Lattice results for the gluon propagator,∆(q), and ghost dressing,F(q) renormalized at
µ = 4.3 GeV.

the gluon propagator in the IR. In addition, the appearance of the gluon mass is also responsible
for the infrared finiteness of the ghost dressing function,F(q2) [7, 17], which is shown on the right
panel of Fig. 3.

The only ingredient missing at this point is the form factorX[1]
0 (q). Unfortunately, as far we

know, there are no lattice data available forX0(q). We will therefore proceed with our analysis by
deriving an estimate forX0, based on its “one-loop dressed” approximation [1].

q
←

−
←
q
2

k +
q
2

−
→
q
2

k + q

k

Figure 4: Diagrammatic representation of the quark-ghost scattering kernel,H(−q/2,−q/2,q), at one-loop.

Specifically, we will consider the scalar contribution of the diagram represented in Fig. 4 and
can be written as

X[1]
0 (p, p,q) = 1− i

(

1
4

)

CAg2

2

∫

k
∆µν(k)D(k− p)Gν Tr{S(k+q)Γµ} . (3.1)

where the full gluon-ghost vertex is denoted byGab
µ = δ abGµ .

Using the tree-level expression forGν =(k−p)ν , and the kinetic configuration wherep1 = p2≡ p,
andp=−q/2, we notice that the above equation simplifies considerably (for more details see [1]),
and we arrive at

X[1]
0 (q) = 1+

1
4

CAg2q2
∫

k

[

1−
(k ·q)2

k2q2

]

∆(k)F(k)
F(k+q)
(k+q)4 . (3.2)

7
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A non-perturbative estimate forX[1]
0 (q) can be obtained by substituting into Eq. (3.2) the lattice

data for∆(q) andF(q), given in Fig. 3. The numerical result forX[1]
0 (q) is shown in the Fig. 5.

1E-3 0.01 0.1 1 10 100 1000

1.0

1.1

1.2

1.3

 

 

X
[1

] (q
)

q2[GeV2]

Form factor X[1] (q)
 Numerical result
 Fit

0

0

Figure 5: Numerical result for the form factorX[1]
0 (q) of the quark-ghost scattering kernel given by Eq. (3.2)

whenα(µ2) = 0.295.

As we can seeX[1]
0 (q) shows a maximum located in the intermediate momentum region (around

450 MeV), while in the UV and IR regionsX[1]
0 (q)→ 1. Although this peak is not very pronounced,

it occurs in a region where the kernel of the gap equation is extremely sensitive. We have noticed
that minor changes in the intermediate region result in considerable changesin the value of the
dynamical mass generated as discussed in detail in Ref. [1]).

4. Numerical results

With all ingredients in hand, we are now in position to solve the system formed byEqs. (2.16)
and (2.17). Substituting∆(q2), F(q2), andX[1]

0 (q) into Eqs. (2.16) and (2.17), with the modification
Z−1

c KA,B(k, p)→KA,B(k, p)F(p2), to enforce the correct renormalization group behavior of the
dynamical mass (see discussion in [1]), we determine numerically the unknown functionsA(p2)

andB(p2) for the fundamental representation. The result for the quark wave function A−1(p2) is
shown in the left panel of Fig. 6, while the right panel shows the dynamicalquark massM (p2).

Notice that Fig. 6 shows the result for both verticesΓµ
BC(p1, p2, p3) (red dashed curves) and

Γµ
CP(p1, p2, p3) (black continuous line). One clearly sees thatM (p2) freezes out and acquires a

finite value in the IR, (M (0) = 294 MeV in the case of the BC vertex, andM (0) = 307 MeV for
the CP vertex). Moreover, in the UV it shows the expected perturbative behavior represented by
the blue dashed curve.

Once the behavior of the dynamical quark mass has been determined, we have computed
the pion decay constant and the quark condensate. For the pion decay constant we obtained
fπ = 80.6 MeV while for the condensate〈q̄q〉(1GeV2) = (217MeV)3, which are in good agree-
ment with phenomenological results [1]).

Next, we solve the system of Eqs. (2.16) and (2.17) in the adjoint representationi.e. Cr =CA = 3.
When we switch from the fundamental to the adjoint representation, the overall effect in the gap

8
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Figure 6: Left panel: The quark wave functionA−1(p2) in the fundamental representation for both vertices
Right panel: The dynamical quark massM (p2).

equation is an enhancement factor of 9/4 due to the difference in the corresponding Casimir eigen-
values.

The numerical results for the adjoint representation are shown in the Fig. 7. On the left panel,
we compare the fermion wave functions,A−1

adj(p
2), when we use the modified BC (red dashed line)

and CP vertices (black continuous line).

On the right panel, we show the fermion dynamical massMadj(p2). We see that the infrared
saturation ofMadj(p2) occurs for higher values compared to the values ofM (p2) in the fundamen-
tal. More specifically, when the modified BC vertex is employed, one obtainsMadj(0) = 750 MeV,
while for the CP vertexMadj(0) = 962 MeV. Clearly, due to the nonlinear nature of the gap equa-
tion, the results found in the adjoint representation can not be reproduced from the fundamental
solutions through a simple multiplication of the factor 9/4. For example, the value for Madj(0) are
clearly higher than 9/4M (0).
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Figure 7: Left panel: The fermion wave functionA−1
adj(p

2) in the adjoint representation.Right panel: The

dynamical fermion massMadj(p2).
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5. Conclusions

We have shown that the quark gap equation can give rise to phenomenologically compatible
results for the dynamical quark mass provided that (i) a complete non-Abelian quark-gluon vertex
(ghost-dressing function and quark-ghost scattering kernel) is introduced, and (ii) the recent lattice
results for the gluon and ghost propagators are used.

It is important to emphasize that the incorporation of the appropriate ingredients in the way
dictated by the underlying symmetry, as captured by the Slavnov-Taylor identity for the quark-
gluon vertex, furnishes to the kernel (especially in the intermediate region of the momenta) the
required support, thus obviating the need to resort to additional (artificiallyinduced) enhancements,
of questionable field-theoretic origin.
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