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1. Introduction

One of the most crucial features of QCD is the dynamical generation ofiek gquass and
the related phenomenon of chiral symmetry breaking (CSB). The realizi#ttbese characteristic
QCD phenomena is intimately connected with the non-perturbative nature offtased sector
of the theory; therefore, their study in the continuum is best studied within therently non-
perturbative formalism based on the Schwinger-Dyson Equations (EDE).

It is well known that the non-linear integral equation governing the bienaf quark prop-
agator (gap equation) displays a very rich structure. In particular, Xiséeace or not of non-
trivial solutions for this equation depends crucially on the strength of itsdtewhich is largely
determined by the non-perturbative behavior of the fully dressed glumpagator and the quark-
gluon vertex [1]. Actually, the quark-gluon vertex plays an absolutetgmisal role, introducing
to the gap equation a dependence on the ghost dressing function [Bleagdark-ghost scattering
amplitude [1]; as we will see, this dependence turns out to be numericatijatfar obtaining
phenomenologically acceptable quark masses.

In this talk, we will show how it is possible to obtain physically relevant solutfonghe quark
dynamical mass using the infrared finite ingredients obtained from the lattice nen-vanishing
gluon propagator and a non-enhanced ghost sector. To do thatjld/a buncation scheme for the
quark SDE, supplemented with three non-perturbative ingredients: @uba propagator, (i) the
ghost dressing function obtained from large-volume lattice simulations [4rt] (iii)) the “one-
loop dressed” approximate version of the scalar form factor of thekegfaost scattering kernel [1].
In addition, the results for the fermion masses in the adjoint representagidmiafly discussed.

2. The gap equation

Let us start by defining some basic quantities that are important for thesemafithe CSB.
The quantity that will be on the focus of our attention is the full quark prapagin Minkowski
space, its inverse has the general form given by

S H(p)=p—m—Z(p) =A(p*)p—B(p°), (2.1)

wherem is the bare current quark mass, ang) the quark self-energy. Notice that the self-
energy can be decomposed in terms of a Dirac vector compoAépt), and a scalar com-
ponent,B(p?), which allow us to define the dynamical quark mass function as being the ratio
A (p%) = B(p?) /A(P?).

As we are interested in generating the quark mass exclusively througimityad effects, we
consider the case without explicit CSB, where the bare mass0. Then, it is easy to see that
the quark propagator will develop a dynamical quark mass only if the scataponentB(p?), is
different from zero [6].

The diagrammatic representation®f!(p) is shown in Fig.1; using the same convention of
momenta flow as indicated in the figure, the gap equation can be written as

S(p) = p-Ga? [ TSNy (—p ka0, 22)
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whereq = p—Kk, f, = u?(2m~9 [d9, with d = 4 — ¢ the dimension of space-timeC;, is the
Casimir eigenvalue of the given fermion representation, where we=sdt for the fundamental,
andr= A for the adjoint. Specifically, for the gauge gro8p)(3), we haveCa = 3 andCr = 4/3.

Figure 1: Diagrammatic representation of the quark SDE (gap equation

According to Eq. (2.2), the quark propagat8(p), is dynamically determined in terms of
an integral equation involving itself, the full gluon propagator, to be dehbyeA"Y(q), the full
fermion-gluon vertex , (—p,k,q), and its tree level counterpd‘ri?] = Y.

In the Landau gauge the full gluon propagathy, (), has the form

AV (q) = —i [g’” - q‘;‘jv} A(P), (2.3)

where the non-perturbative behavior of the scalar fastof) has been studied in great detail in
the continuum [7, 8], and in the lattice simulations [4, 5].

2.1 Thefull quark-gluon vertex

In principle, the fully-dressed quark-gluon vert€,, is determined from its own SDE, which
contains a number of (unknown) multiparticle kernels, characteristic of dheaked “skeleton
expansion”. Dealing with such an equation is technically very difficult; floeeethe standard way
to obtain information about this vertex is to use a gauge-technique Ansat4X6t. The general
idea of this method is to express the longitudinal part of a vertex in terms oati@ug quantities
appearing in the fundamental Ward identity or Slavnov-Taylor identity (8iEl)it satisfies.

In the case of the quark-gluon vertex, the general Lorentz decompogitiothe longitudinal
part of ', involves four different form factors. All these form factors contamexplicit depen-
dence to both the ghost dressing function and the “quark-ghost scgtkernel” which, in turn,
also has a rich tensorial structure. Specifically, the vertgio:, p2, p3) satisfies the following
STI[9]

PET (1. P2, P3) = F(Ps)[S *(—p1)H (p1, P2, p3) — H(p2, p1. ps)S *(p2)] (2.4)

whereH (p1, p2, p3) is the quark-ghost scattering kernel represented in the Fig. & goy] is the
ghost dressing function which is related to the full ghost propagat@(ipy) = iF (ps)/ p3.

The kerneH (p1, p2, p3) and the “conjugateH (ps, p1, ps) have the following Lorentz decom-
position [11] (note the chang® <> p. in the arguments of the latter)

H ( P1, P2, p3) = XO]I + lel + X2p2 + X36_NV pé_l p\Z} 5
H(p2, p1, P3) = Xol — Xop1 — X1z + X3Guv Py P , (2.5)
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Figure 2: The fermion-ghost scattering kerrté(p1, p2, p3).

where the form factor¥; are functions of the moments;, = X(p1, p2, p3), and we use the notation
Xi(p,r,q) = X(r,p,q) and Gy = 5[y, W)-

The most general Lorentz decomposition for the longitudinal part of ttexe, (p1, p2, P3)
can be written as [11]

Fp(P1, P2, P3) = Layu + La(pr — P2) (P21 — P2)yu + La(P1— P2)yu + LaGpv(p1—p2)¥,  (2.6)

wherel; are the form factors, whose dependence on the momenta has beeessegdpin order
to keep a compact notatione., Lj = Lj(p1, p2, p3). Notice that the tree level expression Fdf] is
recovered settins =1 andL, =Lz =L4=0; then,l‘E?] = Yu-

Contracting Eg. (2.6) witlp}, we have

P57 u(PL, P2, Ps) = (P3— PT)Lsl+ [(P3 — PT)L2 — LaJpr — [(P3 — PT)L2 + Lalp2 — 2LaGyy PL P
(2.7)

In addition, substituting the standard decompositiorsof(p), given in Eg. (2.1), and the
expression of (ps, p2, p3) given by Eq. (2.5) into Eq. (2.4), we find that the rhs of Eq. (2.7) can
be also expressed in terms of the functiénd® andX;'s. Then, it is relatively straightforward to
demonstrate that tHg’s may be expressed as [1]

L = U2 L+ (92— pupe e+ A(pe) Ko+ (9 pr-pe)Xel

+ F(§3>{B(pl)(xl+xz)+B(pz)(X1+X2)}J
Lo = 1P LA (52 + prp2) X6 — Xo] — Alp2) [(3+ pa-p)Xs — Kol
2 2% — 2) P1)1(P1+ P1-P2)X3 P2)1(P2 + P1-P2)X3 — Xo

N Z(E%(ﬁ”p@{B<p1><xz—x1>+B<pz><x1—xz>}:
Ls = — sz(_psgz {A( p1) (PEX1+ Pr-P2Xz) — A(P2) (P5X1+ P1-p2Xz) + B(p1)Xo — B(pz)xo} ;

2 1

Lo = E0 apr)e - A(paXa + B(puXe - BP2 X . 28)

It is interesting to notice that setting in Eq. (226 = Xo =1 andX; = X; =0, fori > 1, and
F(ps) = 1, we obtain the following expressions

L, — AP1) +Alp2) L, — B(Pr) —B(p2)
2 ’ -
A(p1) —A(p2)
Lo=— 55" Ls=0 2.9
2T 22 ‘ (2.9)
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which give rise to the so-called Ball-Chiu (BC) vertex [12],

Mhc(py, P2, Ps) = W P
(P —p2)"

v {1ap— A2 P52 B0 -BP2) | (210

PI— P
which is widely employed in the literature for studies of CSB [6].

In this work, we go beyond the Abelian version of the quark-gluon veebgxressed by
Eqg. (2.10), and we consider the case where only the scalar compdniret guark-ghost scat-
tering kernel is non-vanishinge. X # 0 while X; = X; = 0, fori < 1. In this limit, the expressions
of Eq. (2.8) reduce to

L= Fpaa(ps) | SRR (s | 2R
1
L= Fpiatps) | P50 Lm0, @.11)

According the above expression, the form factors display an explicit dependence on the
productF (ps)Xo(ps) which contains information about the infrared behavior of the ghostgarop
gator [1]. Therefore, the information about the ghost sector entershiatgap equation Eq. (2.2)
through the quark-gluon vertex of Eq. (2.6).

Since the transverse part of the quark-gluon vertex is not constraingide STI given by
Eqg. (2.4), it is possible to add a transverse part to the vertex without vigldta this important
identity. The so-called Curtis and Pennington (CP) vertex [13], to betddmyrgp, modifiesrgC
by an identically conserved term [6], such that

M &p(P1, P2, P3) = Mhe(P1, P2, P3) + T5 (P1, P2, P3) (2.12)
with
2 A2\ _ _ u
T (pa.pe ) = P P BB R ) ), (21
where
1 s 50 [B(p) Bz(pl)r
d(p1, P2) = p§+p%{(pz P1) +[A2(p2)+A2(p1) : (2.14)

In analogy to what happens in the case of the BC vertex, the ghostseffee toF (ps) and
the quark-ghost scattering kerr)(%}”(pg) will be incorporated into the CP vertex through a simple
multiplication of its tensorial structure by the factEI(pg)X([,l](pg,). Therefore, within our ap-
proximation, the “ghost-improved” versions of the vertex, to be denoteﬁ@@ypl, p2, p3) and
fép( p1, P2, P3), respectively, can be written as

Fho(pr, P2, pa) = F(p2)XM (ps) (P, P2, P3).
TE(P1, P2, P3) = F (pa) X" (Pa)T Ep(Pr, P2, P3) (2.15)
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Notice that the above equation in the IimiOc(é‘:u (q) = 1 reduces to the vertex employed in Ref. [3].

Substituting the vertefgc(pl, P2, p3) given by Egs. (2.6) and (2.11) into the gap equation
(2.2), and definingpy = —p, p2 =k, and p3 = q, we arrive at the following coupled system for
A(p®) andB(p?)

AP = 1+GEZ" [ 4 k‘f/oészr E‘;? i ARk, (2.16)
Ho(p—k
B(F) = G2 | i g 8k ), (2.17)

where the kernel#s(q) corresponds to the part that is not altered by the tensorial structure of th
guark-gluon vertex, namely

#o(q) = D@)F (@)X (@), (2.18)

while the parts that are affected, 2 (k, p) and %€k, p), are given by [14]

2
ARk p) = S A0+ AP (39— 20(p. k)] - 280 0800 ) "L
_AGKRLAG, p?) K2 — (kp';’) 25 Php.ig| . (2.19)

Hg (k. p) = gB(kz)[A(kz)+A(IO2)]+2[B(|<2)AA(k27 p*) — A(K*)AB(K?, p*)| h(p, k),

where [kz ) (K )2}
h(p,k) = pqu, (2.20)
e AKR) — A B(K?) — B(p?)
AR, p?) = N AP A2, p2) = 2 B (2.21)

Similarly, the effect of the vertefgp(pl, P2, P3) is to replace the kernelst, 8¢ (k, p) and
HEC(k, p), appearing in Eq. (2.16) and (2.17), b P(k, p) and #5=P(k, p), respectively, where

2 _ n2)\2
(k. p) = Ak, p) + B;pp (k%)A (kz,pz)W’
Pk p) = A5© 3seade. i) K =P
Hg (k. p) = A (k. p) + SB(K)AAKS, pf) T (2.22)

3. Thenon-perturbativeingredients from the lattice

As we have seen in Eq. 2.18, the gap equation given in Egs. (2.16) d¥J (&pends on the
nonperturbative form of the three basic Green’s functions, nad@ly, F(q), andXo(q). There-
fore, in order to proceed with the analysis, we use¥@y) andF (q) the recent lattice data obtained
by [4], and shown in Fig. 3.

We clearly see that both lattice results f4q) andF (q) are infrared finite. This characteristic
feature has been long associated with a purely non-perturbative, eféecely the dynamical gen-
eration of an effective (momentum-dependent) gluon mass [15, 2, 18sevpresence saturates
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Figure 3: Lattice results for the gluon propagatak(q), and ghost dressingr(q) renormalized at
u=43GeV.

the gluon propagator in the IR. In addition, the appearance of the gluos imatso responsible
for the infrared finiteness of the ghost dressing functifg?) [7, 17], which is shown on the right
panel of Fig. 3.

The only ingredient missing at this point is the form fadt@’](q). Unfortunately, as far we
know, there are no lattice data available ¥gfq). We will therefore proceed with our analysis by
deriving an estimate foXg, based on its “one-loop dressed” approximation [1].

Figure4: Diagrammatic representation of the quark-ghost scagdennelH(—q/2,—q,/2,q), at one-loop.

Specifically, we will consider the scalar contribution of the diagram remtesl in Fig. 4 and
can be written as

2
X'ppa=1-i(;) % [ ®DK-poTSKaN). @Y

4) 2
where the full gluon-ghost vertex is denoted®§ = 62°G,.
Using the tree-level expression 8y, = (k— p),, and the kinetic configuration whepe = p2 = p,
andp = —q/2, we notice that the above equation simplifies considerably (for more dedai[¢]}3,
and we arrive at

Ug— 1.t (k-a)? F(k+0q)
x'@ =1+ 40 [ |1- (o] arorto . @2




Chiral symmetry breaking with a non-enhanced ghost sector Arlene C. Aguilar

A non-perturbative estimate fmél] (g) can be obtained by substituting into Eq. (3.2) the lattice
data forA(q) andF(q), given in Fig. 3. The numerical result fdél](q) is shown in the Fig. 5.

1.3
T T T T Form factor X[g (q)

&  Numerical result

—Fit

T
1E-3 0.01 0.1 1 10 100 1000

Figure5: Numerical result for the form factoqg“ (q) of the quark-ghost scattering kernel given by Eq. (3.2)
whena (u?) = 0.295.

As we can seﬁél] (q) shows a maximum located in the intermediate momentum region (around
450 MeV), while inthe UV and IR regior%([,l] (q) — 1. Although this peak is not very pronounced,
it occurs in a region where the kernel of the gap equation is extremelitigen$Ve have noticed
that minor changes in the intermediate region result in considerable chentpesvalue of the
dynamical mass generated as discussed in detail in Ref. [1]).

4. Numerical results

With all ingredients in hand, we are now in position to solve the system formé&aijby(2.16)
and (2.17). Substituting(g?), F (¢?), andxél] (q) into Egs. (2.16) and (2.17), with the modification
Z: sk, p) — Hap(k, p)F(p?), to enforce the correct renormalization group behavior of the
dynamical mass (see discussion in [1]), we determine numerically the unkfunwtionsA(p?)
andB(p?) for the fundamental representation. The result for the quark wawaifumA—1(p?) is
shown in the left panel of Fig. 6, while the right panel shows the dynargicatk mass# (p?).

Notice that Fig. 6 shows the result for both vertif&(pl, p2, p3) (red dashed curves) and
fép( p1, P2, P3) (black continuous line). One clearly sees that(p?) freezes out and acquires a
finite value in the IR, (7 (0) = 294 MeV in the case of the BC vertex, and (0) = 307 MeV for
the CP vertex). Moreover, in the UV it shows the expected perturbagitabor represented by
the blue dashed curve.

Once the behavior of the dynamical quark mass has been determined vevedmputed
the pion decay constant and the quark condensate. For the pion datstard we obtained
f = 80.6 MeV while for the condensat@q) (1GeV?) = (217MeV)3, which are in good agree-
ment with phenomenological results [1]).

Next, we solve the system of Egs. (2.16) and (2.17) in the adjoint repgetsmi.e. G = Cp = 3.
When we switch from the fundamental to the adjoint representation, thalbeéect in the gap
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Figure 6. Left panel The quark wave functioA=(p?) in the fundamental representation for both vertices
Right panel The dynamical quark mas# (p?).

eqguation is an enhancement factor of 9/4 due to the difference in thesponding Casimir eigen-
values.

The numerical results for the adjoint representation are shown in the.Rn the left panel,
we compare the fermion wave functionﬁgdlj(pz), when we use the modified BC (red dashed line)
and CP vertices (black continuous line).

On the right panel, we show the fermion dynamical ma&g;(p?). We see that the infrared
saturation of Zaq;( p?) occurs for higher values compared to the values#ifp?) in the fundamen-
tal. More specifically, when the modified BC vertex is employed, one obt#ing0) = 750 MeV,
while for the CP vertex#,qj(0) = 962 MeV. Clearly, due to the nonlinear nature of the gap equa-
tion, the results found in the adjoint representation can not be reprddrgra the fundamental
solutions through a simple multiplication of the factor 9/4. For example, the vatu#g;(0) are
clearly higher than 94.#(0).

T
Dynamical Fermion Mass
1.00 Adjoint representation |
—— CP vertex

""" BC vertex

0.75

0.50 4

1A, (P°)
91,,(p°) [GeV]

Fermion wave function 0.25+4

Adjoint representation

0.4+ —— CP vertex 1
""" BC vertex

T T T T T 0.004

0.01 0.1 1 10 100 1000 10000 0.01

pGeV’] pGeV’]

1000

Figure 7. Left panel The fermion wave functiom;dlj(pz) in the adjoint representatioriRight panel The
dynamical fermion massZagj( p?).
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5. Conclusions

We have shown that the quark gap equation can give rise to phenomieatiiogompatible
results for the dynamical quark mass provided that (i) a complete non-Almliark-gluon vertex
(ghost-dressing function and quark-ghost scattering kernel) is inteztj and (i) the recent lattice
results for the gluon and ghost propagators are used.

It is important to emphasize that the incorporation of the appropriate ingitedie the way
dictated by the underlying symmetry, as captured by the Slavnov-Taylotitidéor the quark-
gluon vertex, furnishes to the kernel (especially in the intermediate reditleanomenta) the
required support, thus obviating the need to resort to additional (artifiar@iyced) enhancements,
of questionable field-theoretic origin.
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