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A full non-perturbative treatment of gauge theories regmito include matter fields on equal
footing with the gauge fields. Scalar matter can act as a roléeffor generic matter, as many
questions, e. g. confinement, can be posed without referiagparticular Lorentz structure. Due
to their rather simple structure they are also useful to idgvenethods.

One possible way to describe gauge theories beyond petitumtiheory is based on correlation
functions. After a short discussion of the setup, latticeggetheory is used to analyze the interac-
tion of gluons with quenched fundamental and adjoint ssaRoth the two-point and three-point
correlation functions for massive and massless adjointfandamental scalars will be deter-
mined, in minimal Landau gauge. The findings are in agreeméhtthe possibility that scalars
are only slightly affected by the interaction with gluonghelresults are compared briefly with
dynamical, massive scalars, showing no significant chainge confinement region compared
to the quenched case.
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1. Introduction

A full non-perturbative description of gauge theories h\iICD as a prime example, at all en-
ergy scales is arguably one of the central goals of field the&dne possibility to achieve this goal is
a combination of various non-perturbative methods, inigalgr lattice calculations and functional
methods, to obtain systematic control over this very diffippoblem. The basic elements in such
an approach are the (gauge-dependent) correlation fasabithe elementary degrees of freedom,
which are then combined to give access to measurable obées\a, 2].

Of course, such an approach requires particularly goodalanter the most simple correlation
functions, the two-point functions and primitively divergt vertices. For fermions, this has turned
out to be quite a formidable task [1, 3—7]. It appears theectseful to also investigate the more
simple case of scalar particles to improve control over tle¢hads [8—10]. In addition, scalars
are interesting entities on their own, since they permittiol\s confinement [8, 10-12], the Higgs
effect [10, 11], and triviality of gauge field theories [18mong other important problems [10, 11].

The basic question in this endeavor is what the propertiélseoélementary correlation func-
tions are. To provide a first investigation and supply traiecaschemes for functional equations
with valuable input it is thus worthwhile to investigate thén the limited setting of lattice calcu-
lations. Here, preliminary results will be presented fa tjuenched case. The investigation of the
guenched case is not motivated by the computation time dwilcdse of fermions, but rather it
is physically interesting. It is known that quenched adj@ind fundamental charges show quite a
different behavior in connection to confinement and scregti4]: Fundamental charges are con-
nected by a linearly rising Wilson line, while the one betwadjoint charges is asymptotically flat.
It has been argued that this could manifest itself in the $amlar-gluon vertex in the quenched case
[8]. Furthermore, it is possible that whether a particleohgk to the physical Hilbert space can be
read off from the properties of the corresponding propagdttb, 16]. Therefore, the propagators
are also quite interesting to investigate. Finally, in gahi could be expected that there could be
a difference between massive and massless scalars [1antBiherefore investigating both cases
is worthwhile.

In the following, preliminary results will be presented tbese quantities. Details of the setup
are given in section 2, and the results will be presenteddtise3. These will be compared to
existing results [10, 18] for the unquenched case in seetioA short summary in section 5 will
complete this presentation.

2. Setup

The simulation of quenched scalars can essentially be npeefb like the one of quenched
fermions [19]. The only input necessary are Yang-Mills ligokind fields, which will be generated
using the techniques described in [20]. The calculatiolsbeiperformed for two, three, and four
dimensions.

The quenched propagator is then given by [10, 21]

DIR(p) =< DIt > (p), (2.1)
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whereR denotes the representation dbidl is the covariant Laplacian, symbolically in the contin-
uum

DI = (5%, + gTiAZ) (8™ 0, + gr) AR + P& (2:2)

with i and j being either fundamental or adjoint indices. See [10, 2d} e precise lattice im-
plementation. The bare masswill be selected to be 0, 100, 1000, or 10000 MeV. The (non-
amputated) two-scalar-gluon vertices can be construatesialogy to the ghost-gluon vertex [22]
and read [21]

2 (p,g,p+0) =< A3(p)D~*(q,p+q) > . (2.3)

In the present case the gauge group chosen is SU(2). Thusplitrestructure can only be the
tree-level onef2?®. Furthermore, as in the case of the ghost-gluon vertex [p@]unamputated
vertex has only one tensor structure, which will be denotgd\band is one at tree-level. As
for operators involving ghost fields, a conjugate gradidégorithm can be used to determine the
inverted operators in momentum space [20]. Note that duba@bsence of trivial zero modes,
the inverse covariant Laplacian could in principle be extdd at zero momentum. However, due
to the influence of constant modes, which are sensitive tbd@dary conditions, this will not be
done here. Note further that the algorithm is also workingmwhpplied to the zero mass case, and
the inversion is numerically cheaper the larger the baresmas

Of course, all of these quantities are zero if the backgrdiatd is not gauge-fixed. The gauge
chosen here is minimal Landau gauge, as this gauge is nuiherice cheapest one. It should
be noted that this gauge is strictly speaking not the one fmdtie calculations using functional
methods in [8, 9]. See [23-32] for a detailed discussion lbéobptions. However, at the volumes
employed here no significant influence of the gauge choicepseaed. Furthermore, the scalar
fields do not seem to be very sensitive to such gauge choicesased to the gauge fields [10]. In
addition, the volumes in this preliminary report are too ket for being able to probe the very
far infrared. The implementation of minimal Landau gaugedusere is described in [20].

This is sufficient to determine the non-renormalized catieh functions. For the renormal-
ization of the propagator both a wave-function and a massnealization are necessary. This will
be performed as described in [10], demanding thatat2 GeV the propagator and its first deriva-
tive coincide with the tree-level propagator with the ttegel mass. In contrast to the ghost-gluon
vertex, the two-scalar-gluon vertex has to be renormaledvell. Usually, a symmetric point
or the Thomson-limit are useful choices for such a renoatibn. Both of them are not readily
accessible in lattice calculations when performing calttoihs from two to four dimensions [33],
as will be done here. Thus, instead the more easily acceq&®] pointpg= 0 andp? = ¢? = 1.5
GeV will be used, where the vertex is required to be at treeklelt turns out that the vertex is
sensitive to cut-off effects for a lattice spaciag® below approximately 2 GeV [21]. Thus the
renormalization at these lattice spacings can producdianddi cut-off effects, which should be
kept in mind.

This completes the setup for the calculations. More detaifsbe found in [10, 21].
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Fundamental scalar propagator in 4 dimensions
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Figure1: The propagators of the quenched scalars. The left panelsrglsalts for fundamental scalars and
the right panels for adjoint scalars. The top panels aretndanensions with lattice size t4ta—! = 0.9
GeV, the middle panels are in three dimensions with lattize 8 ata—! = 0.9 GeV and the bottom
panels are in two dimensions with lattice siz€ 3#a 1 = 0.9 GeV. The results are always compared to the
tree-level behavior. Statistical error bars are smallanttne symbol size.
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3. Quenched scalars

3.1 Propagators

The propagators for the four different masses for both sprations and in two, three, and
four dimensions are shown in figure 1. Note that the colorayed propagators are shown. The
off-diagonal propagators are zero within errors [21], asxisected from the color structure of the
corresponding Dyson-Schwinger equations [34, 35].

Immediately a number of interesting observations can beemé&itst, the lower the dimen-
sion, the more tree-level-like are the results. Secondliarge momenta the adjoint propagator
deviates stronger from the tree-level one than the fundtahene. This effect increases with the
dimensionality. The origin of this effect may largely be daeerturbative effects. Especially the
increase with dimensionality may be due to renormalizagiffects.

However, the deviations at large momenta are by far not asatia as the deviations at small
momenta. The latter increase with decreasing tree-levesnihis is naively expected as for larger
tree-level mass a particle should be less sensitive toredraffects, and should decouple, at least
perturbatively [36]. Given that even the largest volum# kéis a lowest momentum of more than
100 MeV, it is then consequently also not too surprising thatresults for tree-level mass zero and
100 MeV do not differ significantly, which is already seenfrthe tree-level case.

The most interesting result is, however, that the propagatbow an additional screening
effect compared to tree-level, i. e. their screening niz@ /2 appears to be larger than their
renormalized mass. Of course, larger volumes and a moablekextrapolation to zero momentum
are needed to confirm this. In particular whether a non-zereesing mass exists for zero tree-
level mass remains to be seen. Assuming that the currentsdaithfully extrapolate to zero
momentum, it is a very interesting observation that theestirgy mass depends significantly on the
bare mass. E. g., in the adjoint case for two dimensions tfeesing mass for 100 MeV tree-level
mass could be as large as 800 MeV, while it is only as small @8 MgV for 1000 MeV tree-level
mass. This is not observed for quarks [1]. Furthermore, theesiing mass in the adjoint case
seems to be larger than in the fundamental case, e. g., 1113/&eV in two dimensions for 1
GeV tree-level mass. This, on the other hand, is also obdénvthe comparison of adjoint and
fundamental quarks [6].

However, it should be kept in mind that in contrast to fernsidhere is no distinction be-
tween a mass function and a wave-function, just as for gludrtserefore, the screening mass
contains admixtures from both the wave-function renorzadilbn and the mass-renormalization,
and should even less than in the case for fermions be put icwaection with a possibly existing
pole mass. Nonetheless, the screening mass, defined indkie afay, is still a measure of how
much long-distance modes are screened, when taken as avithtiother quantities such that any
renormalization-group dependency cancels. Here it isijnamindication of how much the behav-
ior of the propagator deviates from the tree-level behavibich is imposed at the renormalization
point, and thus the relevant comparison is made betweenrtipagator at the renormalization
point and zero momentum.

Summarizing, the quenched scalar propagator shows a samtifieparture from tree-level,
and it appears that scalars are screened. However, a cargliysis of finite-volume and cutoff
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effects will be necessary for any conclusive results on thticuum and infinite-volume limit
[21].

3.2 Three-point vertices

The results for the two-scalar-gluon vertex for the momentonfigurationpg= 0 are shown
in figure 2. The results for the symmetric cage= g2 = (p-+q)? do not show a strongly different
behavior for the current lattice settings [21].

Investigating the vertex, it shows a behavior very closegde-tevel, even closer than the ghost-
gluon vertex [33, 37]. If at all, there is only a slight supgsi®n for small scalar momenta, though
this effect is partly influenced by cutoff effects [21]. Tleifect is stronger for the adjoint case than
for the fundamental case, and there also appears to be s@medigcy on the dimensionality, but
the latter is rather weak. Furthermore, there is almost meadency on the gluon momentum.
In particular, there is no sign of possible collinear simgities [8], which is not unexpected [38].
However, this statement should be taken with great careheasotvest accessible momenta are
still very large, and strictly speaking the current gaugedsexpected [24] to show the behavior
obtained in [8].

This is a rather disappointing result, given that one coalkthoped that infrared divergencies
in the two-scalar-gluon vertex may be relevant for the Wildine behavior, or that at least the dis-
tinction of fundamental and adjoint matter should be imigdinclearly on this vertex. On the other
hand, such a slight deviation from tree-level is of courss wseful for the design of truncations
as used in functional methods [16].

4. Comparison to unquenched scalars

In summary, in the quenched case there are significant d@wairom the tree-level behavior
for the propagators, and a mild deviation for the two-seglaon vertex from the tree-level vertex.
To fully investigate scalar matter, unquenching is neagss#ith dynamical scalar matter, no
gualitative difference exists anymore for the Wilson liretveeen fundamental and adjoint matter,
and string breaking occurs in both cases by means of scgeémough bound-state formation. In
the case of fundamental quarks this change leaves only a inipoint on the Yang-Mills sector
and the quark sector, at least for the propagators [1, 4].

Currently, calculation exist for the unquenched case fefftindamental propagator in four di-
mensions [10] and the adjoint propagator in three dimesdib8]. It is of course very complicated
to assess the correct translation of the corresponding,smaéven set to the corresponding scale
in the first place [10]. Therefore, at best a qualitative carigpn can be made, using here a bare
mass of 1.5 GeV in four dimensions [10] and 100 MeV in threedafigions. This is shown in figure
3. In both cases the comparison is done in what is usuallgddfie confinement phase, though
this name has to be taken with care [11], in particular forftirelamental case. The change in the
Higgs phase does not appear to be too large for the scalaagmtgy [10], though the influence on
the Yang-Mills sector is substantial [10] and has to be itigated further.

Returning to the comparison in figure 3, it is visible that,fasas this crude comparison
can be taken, there is no significant qualitative differenesveen the quenched and unquenched
case, though the involved scales may be significantly @ifferThis confirms the picture from the
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‘ 2-fundamental-scalar-gluon vertex, orthogonal momenta in 4 dimensions ” 2-adjoint-scalar-gluon vertex, orthogonal momenta in 4 dimensions |
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Figure 2: The single transverse tensor structure of the two-scéilexngvertex for the momentum configu-
rationpq= 0. The left panels show results for the fundamental scakhttaright panels for adjoint scalars.
The top panels are in four dimensions with lattice sizédta 1 = 1.3 GeV, the middle panels are in three
dimensions with lattice size 3@ta~! = 1.3 GeV and the bottom panels are in two dimensions with lattice
size 26 ata—! = 1.3 GeV. The results shown are for the case of 100 MeV tree-leasls. Heavier masses
show a behavior closer to tree-level, while the zero treellimass case is almost indistinguishable for these

lattice parameters [21].
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Figure 3: In the left panel the quenched and unquenched fundameantal gropagator in four dimensions
are compared, the unquenched results being from [10]. Imnidgih¢ panel the same is done for the adjoint
scalar propagator in three dimensions with the unquendsedts from [18].

fermion case that unquenching may have only rather smalt&sfion the matter propagator, at least
when the overall properties of the systems are similar emaoghe quenched case, in particular
concerning asymptotic freedom and the state of global symmse On the other hand that implies
once more that it is unlikely that the propagators alone afficgent to learn about the difference

of fundamental and adjoint matter. Studying at least theetipoint vertices will be an important
next step.

5. Summary

Summarizing, it is possible and feasible to determine &t lv@e propagators and three-point
vertices for quenched scalar matter in the fundamental djaind representation. Furthermore,
the results show, at least for the lattice settings studlieaybvious differences between both cases.
If this were confirmed on larger volumes and finer cutoffs amehtually in the continuum and
infinite-volume limit, this would imply that higher-ordeprrelation functions may be necessary to
understand the origin of the difference between adjointfandamental matter. However, even so
innocent looking propagators as those shown here can hténer iateresting analytical structures
[16, 17], and thus a detailed analysis with improved latsietings is an important step [21].

These investigations provide interesting starting pdimtgalculations using functional meth-
ods [16]. If indeed there is no extreme behavior in the twalagegluon vertex, this would lead to
a very simple truncation for such calculations. Since timsde structure of scalars is furthermore
simple, this may be an important testbed to develop contret truncation artifacts and for the
improvement of numerical methods.
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