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1. Introduction

Holographic description of gauge theories have provided new theoretical tools and new phys-
ical insights for the study of the quark-gluon plasma. In particular the strongly coupled but quasi
ideal liquid nature of the plasma can be understood from the fluid/gravity duality [1] which tells us
that strongly coupled liquids in gauge theory have a universal description as gravitational systems
with η/s = 1/4π . On the other hand we would like to understand this behaviour of the strongly
coupled quark-gluon plasma from a more fundamental gauge theory point of view. In this paper,
we would like to point out the importance of light scalar fields. Our inspiration comes primarily
from lattice results [2], which show that the deconfinement phase transition is driven by percolation
of magnetic strings which change from 4D to 3D. These percolation phase transitions can be de-
scribed by the condensation of scalar fields living in the infrared and which vanish in the continuum
limit. We show that these scalar fields have a natural holographic interpretation as fields describing
winding modes around compact directions.

In section 2, we show how the statistical mechanics of hot strings close to the Hagedorn tem-
perature can be captured by a thermal scalar field which is static and describes the winding mode
around Euclidean time. In section 3, we briefly discuss the relevance of the Hagedorn phase tran-
sition to the holographic description of the deconfinement transition. In section 4, we derive (very
much inspired by the work of Krusczenski [3]) the thermal scalar path integral, which is then used
in section 5 to show that physical properties of a hot string gas such as the energy momentum
tensor and the string charge have simple expressions in terms of a complex scalar field. The cor-
responding U(1) symmetry is identified as coming from the Kaluza-Klein winding modes around
Euclidean compactified time. In section 6, we propose an effective description of the stretched
membrane of the AdS-black hole describing the plasma in terms of the thermal scalar field. Using
the fluid/gravity duality which maps the fluid behaviour of the plasma on the fluid behaviour of the
stretched membrane, we argue for the importance of the thermal scalar in the interpretation of the
behaviour of the quark-gluon plasma. We make this connection even more plausible by discussing
the Hawking-Page transition in the Witten model [15], from the point of view of condensation of
winding modes as described by scalar fields. We interpret this phase transition as a transition from
a 4D quantum condensed scalar field to a 3D condensed thermal scalar field and interpret this in
terms of percolation transitions as observed on the lattice [2]. We end with some conclusions.

2. The Hagedorn phase transition and the thermal scalar

The Hagedorn phase transition in string theory is due to the well known fact that the density
of states for highly energetic strings grows exponentially as:

ρ(E)∼ eβH E

E1+α
(2.1)

where

βH = 4πα
′1/2 (2.2)

is the inverse Hagedorn temperature and α is determined by the number of non-compact dimen-
sions. The divergence of the partition function for β < βH signals a limiting temperature which
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has the following physical interpretation [4]: the energy of a long string is given by E =
(N

α

)1/2

for large N, where N is the total number operator. The number of states as a function of N goes
roughly as exp(4πN1/2) so that the entropy for long strings is given by S = 4πα ′1/2E.
The divergence of the partition function at β = βH means that the microcanonical ensemble is dom-
inated by a single long string with constant temperature β (E) = ∂S

∂E = 4πα ′1/2. So any energy that
is pumped in the system goes into making the string longer, but does not change the temperature.

To relate this divergence to the existence of a light scalar field, we first show how we can
rewrite the free energy of a free gas of relativistic particles as a path integral of a single particle
winding around Euclidean time. We start from

F =
V
β

∫ dD−1k
(2π)D−1 ln(1− exp(−βωk))

=−V
β

∞

∑
w=1

∫ dD−1k
(2π)D−1

1
w

exp(−wβωk) (2.3)

and use the identity

1
w

exp(−wβω) =
β√
2π

∫
∞

0

ds
s3/2 exp

(
−1

2

(
ωs− w2β 2

s

))
(2.4)

and ωk =
√

k2 +m2 to turn the integration over momenta into a Gaussian and finally obtain

F =−V
∞

∑
w=1

∫
∞

0

ds
s(2πs)D/2 exp

(
−m2s

2
− w2β 2

2s

)
(2.5)

This equation for the free energy can be written as a one-particle path integral on R3 × Sβ

1 by
interpreting s as the Schwinger parameter and w as the winding number of classical trajectories
Xcl

0 (τ) = wβ
τ

s winding around Euclidean time:

βF =−
∫

[DX µ ] exp

(
−1

2

∫
dτ

[(
∂X µ

∂τ

)2

+m2

])
. (2.6)

Using the previous trick for all mass levels of the closed string, Polchinski [5] showed that the
free energy of a free string gas can be written as the path integral of a single string on a torus in the
Euclidean background M×Sβ

1

βF =−
∫

∞

0

dτ2

2τ2

∫ + 1
2

− 1
2

dτ1 ∆FP

∫
[DX µ ]

√
G exp

(
− 1

4πα ′

∫
d2

σ
√

h hαβ
∂αX µGµν∂β Xν

)
(2.7)

where hαβ is the worldsheet metric for a torus with moduli τ1 and τ2, and Gµν is the background
metric. For the compact time dimension, we have the following periodicity property:

X0(σ1 +1,σ2) = X0(σ1,σ2)

X0(σ1,σ2 +1) = X0(σ1,σ2)+wβ , w ∈ Z. (2.8)

Winding number w = 0 corresponds to vacuum energy. Note that the path integral (2.7) with the
periodicity conditions (2.8) is not explicitly invariant under modular transformations. It was shown
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in [6] that (2.7) can be made manifestly modular invariant by restricting to the fundamental modular
domain F0 with −1

2 ≤ Re[τ]≤ 1
2 , |τ| ≥ 1 and imposing periodic boundary conditions

X0(σ1 +1,σ2) = X0(σ1,σ2)+nβ , n ∈ Z
X0(σ1,σ2 +1) = X0(σ1,σ2)+wβ , w ∈ Z. (2.9)

The Hagedorn temperature can now be understood as the temperature where a new light scalar
appears. Indeed, the mass spectrum for closed strings winding around Sβ

1 is given by:

M2 =
n2

R2 +
w2R2

α ′2
+

2
α ′

(h+ h̄−2) (2.10)

where R = β/2π . The scalar state (h = h̄ = 0) with Kaluza-Klein momentum n = 0 and winding
w =±1 has mass:

M2(β ) =
β 2−β 2

H

4π2α ′2
(2.11)

and becomes a massless complex (w = ±1) scalar in D− 1 dimensions at β = βH [7]. The dom-
inance of the microcanonical ensemble by a single long string is here translated into an infrared
divergence due to the so called thermal scalar. One can use the thermal scalar to derive the density
of states at high energy. Indeed, for β ∼ βH , one has:

βF ≈−V
∫ dD−1k

(2π)D−1 ln
(
k2 +M2(β )

)
≈V

∫ dD−1k
(2π)D−1

∫
∞

0

dE
E

e−βE+βH E−2π2α ′2k2E/βH

≈
∫

∞

0
dE e−βE

ρ(E) (2.12)

with

ρ(E) =V
β
(D−1)/2
H

(4π2α ′)D−1
eβH E

E1+(D−1)/2 . (2.13)

3. The Hagedorn phase transition and deconfinement

It was suggested in [8] that the Hagedorn temperature is not a limiting temperature but points
to a first order phase transition with large latent heat similar to the deconfinement phase transition.
Let us first discuss the deconfinement phase transition for pure Yang-Mills theory. For T < Tc,
glueballs are thermally excited out of the vacuum and contribute O(1) to the free energy. Above Tc,
we have a gluon plasma which contributes O(Nc2) to the free energy. From the standpoint of
holography, the phase transition is a geometric Hawking-Page transition from a thermal AdS-space
(AdS-metric with compactified time) to an AdS-space with a black brane. The classical thermal
AdS-metric only contributes to the vacuum energy. So we have to go to one-loop or genus one
(torus) partition function to get a contribution to the free energy which is therefore O(1). Above
Tc, the black brane metric contributes at the classical level (genus zero) to the free energy which
now becomes O(Nc2). This change from genus one to genus zero points to a quantum field which
gets a classical O

(
1/g2

s
)

expectation value. A similar scenario happens in the Hagedorn phase
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transition [8] where according to (2.11) the thermal scalar becomes tachyonic above TH and gets
an expectation value. Similar phase transitions related to topology change in spacetime have been
associated to condensation of thermal winding modes [9].

4. Thermal scalar path integral

The Hagedorn divergence is due to the τ2 → 0 (ultraviolet) behaviour of the torus path inte-
gral (2.7), where τ2 plays the role of Schwinger parameter. Indeed, in flat space we have:

βF = βVD−1

∞

∑
w=±1

∫
∞

0

dτ2

2τ2

∫ + 1
2

− 1
2

dτ1 |η(τ)|4−2d (4πα
′
τ2
)−d/2 exp

(
− w2β 2

4πα ′τ2

)
(4.1)

where w is the thermal winding number and with

η(τ) = q1/24
∞

∏
n=1

(1−qn) (4.2)

and
q = ei2πτ . (4.3)

Since the integrand is largest when τ1 = 0 and

|η(τ)|2τ2
(τ1=0, τ2→0)∼ 1

τ2
exp
(
− π

6τ2

)
(4.4)

the integrand in the torus partition function behaves as:

τ
d/2−3
2 exp

(
−π(2−d)

6τ2

)
exp
(
− w2β 2

4πα ′τ2

)
. (4.5)

For D = 26 and w =±1, this is converging for τ2→ 0 if

β 2

4πα ′
≥ 4π or β ≥ βH = 4πα

′1/2. (4.6)

The essential idea of the thermal scalar is that the ultraviolet divergence for τ2 → 0 can be
described through some UV/IR connection as an infrared divergence for τ2→ ∞. For this, we use
modular invariance of the torus partition function on a compact space [10]:∫

[DX ] e−S(X) = 2πR(4πα
′
τ2)
−1/2|η(τ)|−2

∑
n,w

exp
(
−πR2|nτ−w|2

τ2α ′

)
(4.7)

under {
τ → τ ′ = 1/τ

(n,w)→ (n′,w′) = (−w,n)
. (4.8)

For τ1 = 0 and the periodicity conditions (2.8) this becomes{
τ2→ 1/τ2

(0,w)→ (−w,0)
. (4.9)
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So qualitativily, the ultraviolet divergence becomes an infrared divergence and the string wraps the
thermal circle along the spatial worldsheet coordinate σ1:

X0(σ1,σ2 +1) = X0(σ1,σ2)

X0(σ1 +1,σ2) = X0(σ1,σ2)+wβ (4.10)

Introducing the worldsheet reparametrization:

σ = σ1
τ2
, τ = σ2

X(σ1,σ2)→ X(σ ,τ)
, (4.11)

we can obtain the dominant contribution in the infrared (τ2→ ∞) by viewing τ2 as a "worldsheet
temperature" and doing a high temperature expansion in Matsubara modes:

X i(σ ,τ) =
∞

∑
n=0

ei(2πnτ2)σ X i
n(τ)

X0(σ ,τ) =±βτ2σ +
∞

∑
n=0

ei(2πnτ2)σ X0
n (τ) (4.12)

where we have explicitly implemented w =±1. In the τ2→ ∞ limit only the n = 0 mode survives,
and we get "dimensional reduction" from a string theory to a particle theory. The discarded oscil-
lator modes however contribute to the worldsheet vacuum energy and this vacuum energy, which
is

∆S =−4πτ2 =−
1

4πα ′τ2

(
τ

2
2 β

2
H
)
, (4.13)

should be reintroduced by hand (just as the ultraviolet divergences coming from the nonzero Mat-
subara modes have to be explicitly added to recover the Stefan-Boltzmann contribution to the free
energy for thermal quantum field theory). Adding all the relevant contributions, we obtain the
particle action for the long string with thermal winding number w =±1 [3]:

Spart =
1

4πα ′

[
β

2 (τ
2
1 + τ2

2 )

τ2
2

∫
τ2

0
dτ G00−β

2
Hτ2

∓2
τ1

τ2
β

∫
τ2

0
dt G0µ∂tX µ +

∫
τ2

0
dt Gµν∂tX µ

∂tXν

]
(4.14)

where the particle coordinates X µ(τ) are defined as Matsubara zero modes:

X i
0(τ) = X i(τ), X0

0 (τ) = X0(τ) (4.15)

and we introduced t = τ2τ .
For constant G00,G0i the linear term drops out due to the periodicity properties and the free

energy due to the thermal winding modes w =±1 is given by1:

βF =−2
∫

∞

0

dτ2

2τ2

∫ +∞

−∞

dτ1 exp
(
−τ2

1 β 2G00

4πα ′τ2

)
(4.16)∫

[DX µ ]
√

G exp
(
− 1

4πα ′

[
τ2
(
β

2G00−β
2
H
)
+
∫

τ2

0
dt Gµν∂tX µ

∂tXν

])
1The integration region for τ1 is more complicated than in (4.16) and only valid for large τ2.
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The factor of 2 comes from w = ±1. For G0i = 0, G00 is constant, we can exactly do the X0 path

integral which gives a factor
(

G00β 2

4πα ′τ2

)1/2
. The factor

√
G00 from the measure is crucial for this;

the integration over τ1 gives a factor which is exactly the inverse so they cancel. Defining the
Schwinger parameter s = 2πα ′τ2 we find:

βF =−
∫

∞

0

ds
s

∫
[DX ]D−1

√
GD−1 exp

(
−1

2

∫ s

0
dt
[
M2(β )+Gi j∂tX i

∂tX j])
=−Tr ln

[
∆+M2(β )

]
(4.17)

where

M2(β ) =
β 2G00−β 2

H

4π2α ′2
(4.18)

and ∆ is the Laplace operator in a D− 1 dimensional space with metric Gi j. The physical inter-
pretation is that the statistics of long strings are those of random walks in D−1 space dimensions
[3].

5. Static correlators and the physical significance of the thermal scalar

The thermal scalar provides a physical picture of long strings as random walks in D−1 space
dimensions. To investigate whether the thermal scalar is merely a mathematical device that allows
calculation of the free energy, or has a deeper physical significance, we calculate some static corre-
lators of physical quantities and show that they have a simple interpretation in terms of the thermal
scalar. Let’s take as an exemple the correlator < Ti j(~x1) Tkl(~x2)> with i 6= j, k 6= l and Ti j(~x) is the
time averaged stress tensor at position~x in D−1 dimensional space given by:

Ti j(~x) =
1

2πα ′

∫
d2

σ
√

h hαβ
∂αX i

∂β X j
δ

D−1
(
~X(σ1,σ2)−~x

)
. (5.1)

Retaining only the Matsubara zero modes in (4.12) and using symmetric point splitting to define
the composite operators we obtain on the torus:

Ti j(~x) = lim
ε→0

1
4πα ′

∫
τ2

0
dt
(
∂tX i(t− ε)∂tX j(t + ε)+(i↔ j)

)
δ

D−1
(
~X(t)−~x

)
(5.2)

Plugging Ti j(~x1) Tkl(~x2) in the path integral (4.17) for Gi j = δi j, and using at fixed τ2:〈
δ

(
~X(t1)−~x1

)
δ

(
~X(t2)−~x2

)〉
τ2

(5.3)

= θ(t1− t2)
〈
~x2

∣∣∣e−|t2−t1|πα ′(∆+M2(β ))
∣∣∣~x1

〉〈
~x1

∣∣∣e−(τ2−|t1−t2|)πα ′(∆+M2(β ))
∣∣∣~x2

〉
+(t1↔ t2)

and the correspondence ∂tX i→−i2πα ′∇i, we find after integrating over t1, t2, and τ2:〈
Ti j(~x1) Tkl(~x2)

〉
= 2∇

1
i ∇

2
k

〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉
∇

1
j∇

2
l

〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉
+(k↔ l) (5.4)

This coincides with the one-loop expectation value of the stress tensor of a D−1 dimensional scalar
with mass M(β ) given by

Ti j = ∂iφ∂ jφ
∗+(i↔ j) (5.5)
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for i 6= j.
To calculate static correlators of momentum density T0i, one has to start from the partition

function (4.16). A detailed calculation [11] shows that, to leading order, a stringy contribution
coming from the winding solution X0(σ ,τ) = ±βτ2σ cancels exactly the contributions from the
fluctuating coordinates X0(τ) and Xi(τ).

Finally we can look at static correlators for the string charge which couples to the Kalb-
Ramond field. The corresponding conserved antisymmetric tensor current is given by:

Jµν(x) =
1

2πα ′

∫
d2

σ ∂aX µ
∂bXν

εab δ
D (Xρ − xρ) . (5.6)

Close to the Hagedorn temperature we can restrict ourselves to the lowest Matsubara mode in (4.12)
so that Ji j = 0 and the string charge averaged over time is given by:

J0i(~x) =±
β

2πα ′

∫
τ2

0
dt

∂X i

∂ t
δ
(D−1)

(
~X(t)−~x

)
. (5.7)

Plugging this into (4.16) and using point splitting, we find

〈
J0i(~x1) J0 j(~x2)

〉
=−1

2

(
β

πα ′

)2[
∇

1
i

〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉
∇

2
j

〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉
−
〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉
∇

1
i ∇

2
j

〈
~x1

∣∣∣∣ 1
∆+M2(β )

∣∣∣∣~x2

〉]
(5.8)

which gives the string charge in terms of the thermal scalar as

J0i =
i
2

(
β

πα ′

)
[φ∇iφ

∗−φ
∗
∇iφ ] . (5.9)

Note that this charge, which is tangent to the string, is conserved as a D− 1 dimensional U(1)
current in the same way as electric current along a wire is conserved in magnetostatics. This U(1)
is a stringy effect due to winding around compactified time. Indeed, compactification leads to a
U(1)×U(1) symmetry where the first U(1) corresponds with Kaluza-Klein momentum and the
second to winding number.

6. The thermal scalar and the stretched membrane

The stretched membrane has been introduced (for relevant literature, see [12]) as a physically
intuitive picture to describe the response of a black hole to external perturbations. The black hole
reacts to electromagnetic and gravitational perturbations as a charged and fluid membrane with
physical properties such as entropy, conductivity and viscosity. The membrane hovers above the
horizon at a distance∼ ls and for FIDO’s (fiducial observers at fixed distance from the horizon) the
membrane is at a temperature of the order of TH . In a sense, the stretched membrane describes the
collapsing process towards the black hole at asymptotically late times. The exact physical nature
of this membrane is however still a mystery.

One could imagine a spherical shell of closed strings collapsing under its weight in a thermal
AdS space and forming an AdS-black hole. At very late times, this shell would hover above the

8
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horizon and be at temperature TS.M. ∼ (g00)
−1/2T . As the temperature would be of the order of TH ,

the membrane could be effectively described as a long string. This picture of the stretched mem-
brane was originally proposed by Susskind in [13] and points to the conclusion that the stretched
membrane is described by the thermal scalar. Using holography, this means that the hydrodynam-
ical properties of strongly interacting gauge theories could be understood in terms of light scalar
fields describing long strings.

One particular aspect of the statistics of long strings close to the horizon is nicely illustrated
by the thermal scalar picture. The string charge J0n gives the density of strings piercing through
a plane with normal vector ~n. Close to the horizon, the local temperature approaches TH and the
thermal scalar becomes massless. At the same time the correlator 〈J0n(~x1) J0n(~x2)〉 becomes long
range which points to a percolation (through the plane) phase transition. This connection between
condensates of winding modes and percolation will be used in the next section where we discuss
the relevance of light scalar fields for the quark-gluon plasma.

7. Long strings, thermal scalar and the quark-gluon plasma

To relate long strings to the quark-gluon plasma, let us concentrate on the holographic model
introduced by Witten [14] and which at finite temperature is in the same universality class as pure
Yang-Mills theory. For T < Tc, we have the metric:

ds2 =
( u

R

)3/2
[

dt2 +δi jdxidx j + f (u)dx2
4 +

(
R
u

)3/2( du2

f (u)
+u2dΩ

2
4

)]
(7.1)

with f (u) = 1− u3
κ/u3. We have two Euclidean compactified dimensions t and x4: t ∼ t + β ,

x4∼ x4+β4. For T > Tc, the role of t and x4 is interchanged and the deconfinement phase transition
is described as a Hawking-Page geometrical transition where the cigar and cylinder geometries in
x4 and t respectively are interchanged (Fig. 1).

Figure 1: deconfinement phase transition and interchange of x4 and t

We can now reinterpret this phase transition in terms of scalar fields. For T < Tc, the metric
(7.1) describes a Euclidean black hole with Hawking “temperature” 1/β4. The stretched membrane
is described by a scalar field living in four dimensions (~x, t). The formation of this “black hole”
would correspond to the condensation of this scalar field. As the metric below Tc is independent
of β , it describes the quantum vacuum and the 4D scalar is a quantum field living in the vacuum.
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Above Tc, we have interchange of x4 and t and we have a black hole with Hawking temperature
1/β . The formation of this black hole is due to the condensation of a 3D thermal scalar (x4 being
invisible to our world at low energies). So the Hawking-Page transition describing deconfinement
can be interpreted as a change from a condensed 4D vacuum scalar field to a condensed 3D thermal
scalar field. These scalar fields live close to the horizon and describe the strongly coupled infrared
degrees of freedom of the plasma.

This scenario which is holography inspired, has been observed also in lattice simulations of
pure Yang-Mills theory around Tc. Below Tc, magnetic strings percolate in 4D and induce confine-
ment. They can be described by a 4D quantum condensed field living in the infrared. Above Tc, the
magnetic strings change from virtual to real by becoming time oriented and wrapping around time.
4D confinement disappears and is replaced with spatial confinement by 3D percolation of magnetic
strings. These types of percolation can be described on the lattice [15] with scalar order parameters
which vanish in the UV. Again this points to the fact that that they can be holographically described
by light scalar fields living close to the horizon.

8. Conclusions

Holographic models of the quark-gluon plasma point to the importance of light scalars living
close to the horizon. These scalars become light by winding around compact directions and have
a stringy origin. As has been suggested in many works [9], the formation of the horizon is due
to condensation of these winding modes. We suggest in this paper that these light scalars can be
also used to understand and describe the hydrodynamic behaviour of the stretched membrane and
by the fluid/gravity correspondence, the hydrodynamic behaviour of the quark-gluon plasma. We
pointed out that the basic scenario for deconfinement is a change from a condensed 4D quantum
scalar to a condensed 3D thermal scalar field and that this precise scenario has been observed on
the lattice. As suggested in [15], the importance of these light scalars can be checked on the lattice
by measuring static correlators of momentum density.
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