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The BRST quartet mechanism is briefly reviewed. A special emphasis is given to the distinction

of perturbative versus non-perturbative quartets. The field contents of the non-perturbative BRST

quartets generated by transverse gluons or quarks in Landaugauge are presented. Corresponding

truncated Bethe-Salpeter equations for the respective first daughter and second parent states are

derived. It is discussed in which sense these equations provide evidence for the existence of

bound states as daughter states in non-perturbative BRST quartets. It is noted that within the

scaling solution of functional approaches the infrared divergence of the quark-gluon vertex is

exactly the right one to make the respective Bethe-Salpeterequation infrared consistent.
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1. Motivation

The gluon propagator of Landau gauge QCD has been shown to be positivity violating, see
e.g. Ref. [1] and references therein. This especially implies that the one-gluon-state (treated as
a physical state in perturbation theory) belongs to the states of negative norm in the indefinite-
metric state space of Yang-Mills (YM) theory. As such it can be identified with aparent state in a
BRST quartet whose other members, however, have to be non-perturbative, i.e. bound, states. In
the following we will identify possible members of this quartet and describe a strategy to provide
evidence for their role in the formalism of covariantly gauge-fixed YM theory. If successful this
may provide a detailed picture of the kinematical aspects of gluon confinementin the Landau
gauge. For the quark propagator the situation is less clear. Nevertheless, by following the same
strategy we want to contribute to a clarification whether quarks are also positivity violating.

2. The perturbative BRST quartet mechanism

The perturbative BRST quartet mechanism is the generalization of the Gupta-Bleuler mecha-
nism [2, 3] to YM theories, for a concise modern treatment see also [4, 5].The underlying idea is
that the gauge condition

∂ µAµ = 0 (2.1)

as formulated in classical physics cannot be elevated consistently to an operator condition in Quan-
tum Field Theory. The correct treatment is instead to define within the space of all quantum states
of QED a physical subspace which is then given by the kernel of the operator∂ µA(+)

µ constructed
from ∂ µAµ by projection on positive energies. To be concise: The physical state space contains all
states|Ψ〉 which fulfill

∂ µA(+)
µ |Ψ〉 = 0. (2.2)

These physical states contain then the longitudinal and the time-like photons such that their re-
spective contributions precisely cancel. Therefore there is no contribution of unphysical states in
theS-matrix. Due to the Minkowski metric it is unavoidable that in covariant gaugesthe time-like
photon states are negative-metric states, and the total state space is an indefinite-metric state space.

Why then keeping the time-like and the longitudinal photon in the formalism if they cancel in
all physical states? If one includes quantum fluctuations we need a tool to count them correctly.
E.g. in perturbation theory in non-relativistic quantum mechanics one injects a complete set of
states (i.e. a “one”) to obtain the correct formulae. The analogue in relativistic quantum field
theory are loops in Feynman diagrams: They describe the quantum fluctuations, and in order to
count correctly one has to inject again a complete set of states, or phrased otherwise, one has to
sum over the propagators of all fields in the formalism, even the unphysicalones. This way of
counting is illustrated in Fig. 1.

The gauge fields of YM theories (called generically gluons in the following although the for-
malism, of course, is valid for all YM theories and not only the Strong Interactions) are self-
interacting. Especially the fact that transverse gluons may scatter into longitudinal and time-like
ones does not allow a straightforward generalization of the Gupta-Bleulermechanism. However, on
a purely perturbative level the cancellation mechanism is only slightly more complicated: Instead
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Figure 1: An illustration of the Gupta-Bleuler mechanism in covariantly gauge fixed QED.

of two respective states four do cancel against each other. In orderto describe this so-called quartet
cancellation mechanism we discuss first the elementary BRST quartet [6]. Within the Faddeev-
Popov quantization of QED one can (by simply ignoring the fact that the ghosts decouple from the
gauge bosons) also formulate the elementary BRST quartet [5]. This results in, of course, the can-
cellation of time-like and longitudinal photons as in the Gupta-Bleuler mechanism. In non-Abelian
gauge theories the elementary BRST quartet takes care of the cancellation of longitudinal and time-
like gluons as well as ghosts and antighosts in all physical states. Here two remarks are in order:
First, the elementary BRST quartet is also valid in the limit of gauge couplingg → 0. Therefore
the perturbative BRST quartet mechanism in YM is only anm-fold duplication of the single can-
cellation mechanism in QED [5] withm being the dimension of the adjoint representation of the
gauge group. Second, due to the nature of the BRST transform one does not directly consider the
longitudinal and time-like gluons but linear superpositions of them, the forward, resp., backward
polarized gluons, seee.g.Chapter 16 of Ref. [4] for a definition of these states.

The reason for building quartets is related to the nilpotency of the BRST transformation: Every
non-singlet state can then produce only one further state when the BRST charge operator is applied,
making thus a doublet. It proves useful to form quartets. This is done such that the Faddeev-Popov
charge conjugated state of the daughter state in this doublet is used as a 2ndparent state which under
BRST generates the 2nd daughter and thus completes the quartet. The construction mechanism is
illustrated in Fig. 2, and we will return to it several times in the following.

To highlight the nilpotency of the BRST transformation we will work in a representation with
Nakanishi-Lautrup fieldBa which becomes on-shell identical to the gauge fixing condition,Ba =

(1/ξ ) ∂µAa
µ whereξ is the gauge parameter of linear covariant gauges. To memorize the BRST

transformationδB one may picture it as a kind of gauge transformation with a constant ghost field
as parameter:

δBAa
µ = Z̃3Dab

µ cb λ , δBq = −igtaZ̃1caqλ ,

δBca = − g
2 f abcZ̃1cbcc λ , δBc̄a = Ba λ , δBBa = 0,

(2.3)

whereDab
µ is the covariant derivative. The parameterλ lives in the Grassmann algebra of the ghost

fieldsca and carries ghost numberNFP = −1. Z̃1 andZ̃3 are the ghost-gluon-vertex and the ghost
wave function renormalization constants. It has been shown that in Landau gaugẽZ1 = 1 [7].
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Figure 2: An illustration of the construction of a BRST quartet.

In a next step one follows the construction of Noether’s theorem to derive a BRST charge
operatorQB. It generates a ghost number graded algebra on the fields,δBΦ = {iQB,Φ}. Defining
the ghost number operatorQc one obtains the algebra

Q2
B = 0 , [iQc,QB] = QB , [Qc,Qc] = 0 . (2.4)

It is complete in the full and therefore indefinite metric state space of a YM theory. The BRST
cohomology is then constructed as follows: The semi-definite physical subspace KerQB is defined
on the basis of this algebra by those states which are annihilated by the BRST chargeQB, QB|ψ〉=

0. SinceQ2
B = 0, this subspace contains the space ImQB of the so-called daughter statesQB|φ〉 (cf.

Fig. 2), which are images of their parent states in the indefinite metric state space. A physical (i.e.
positive-metric) Hilbert space is then obtained as the quotient space of equivalence classes:

H (QB) = KerQB/ImQB . (2.5)

This Hilbert space is nothing else than the space of BRST singlets. All states are either BRST
singlets or belong to quartets, this exhausts all possibilities [6]. Here a remark is in order: Had
we required onlyQB|ψ〉 = 0 half of these metric partners had been eliminated from allS-matrix
elements, leaving the unpaired daughter states of zero norm which do not contribute to any ob-
servable,cf. Fig. 2. However, from a mathematical point of view it is more satisfactory to retain
only positive-norm states in the physical state space. Note furthermore that the parent-daughter
states of opposite Faddeev-Popov charge possess non-vanishing matrix elements (which are usu-
ally normalized to one) [6]. This elucidates why quartets and not doublets are considered: These
non-vanishing matrix elements are essential in the cancellation mechanism.

As BRST is a symmetry and the BRST charge operatorQB commutes with the Hamiltonian
the daughter state is degenerate with the parent state:1

H|ψ〉 = E|ψ〉 ⇒ HQB|ψ〉 = QBH|ψ〉 = EQB|ψ〉. (2.6)

And as the Landau gauge HamiltonianH is ghost-antighost symmetric all members of a BRST
quartet are degenerate.

1We thank Dan Zwanziger for pointing this out to us.
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The elementary quartet consists of the asymptotic states related to the backward and forward
polarized gluons as well as the ghost and the antighost [8, 6]. Hereby one gluon polarization and
the antighost provide the parent states, the orthogonal gluon polarizationand the ghost the daughter
states. In all physical states the contribution of this quartet cancels strictly due to the algebra (2.4),
a detailed description is given in Sect. 4.1 of [6]. The corresponding construction of perturbative
“multi-particle” BRST quartets follows straightforwardly and is illustrated in Fig.2. To fix the
notation: We will call the negative norm state of Faddeev-Popov chargeN we start with the 1st
parentΠN. Acting with the BRST charge operatorQB one obtains the 1st daughter. The Faddeev-
Popov charge reflected state of the 1st daughter provides the 2nd parent. Acting on it with QB

provides the 2nd daughter with again has then Faddeev-Popov chargeN.

3. The non-perturbative BRST quartet mechanism

Within perturbation theory the transverse gluons belong to the Hilbert spacedefined by the
BRST cohomology. However, this is in open conflict with the observed confinement of gluons.
Therefore it has been conjectured already in the seventies that the transverse gluons are also part
of a BRST quartet [8]. This property is then in turn believed to be an important aspect of gluon
confinement [9]. Somewhat later it has been observed [10] that the antiscreening of gluons (which
is a very welcome property as it explains asymptotic freedom) is already at theperturbative level
in conflict with the positivity of the gluon spectral function. As stated above there is no doubt any
more that the transverse gluons of Landau gauge QCD are positivity violating, seee.g.Ref. [1].

An inspection of Fig. 2 implies that “one-transverse-gluon” states are BRST parent states.
Their respective daughters, however, cannot be the elementary “one-ghost” states because these
are members of the elementary quartet. From eq. (2.3) it immediately follows that the 1st daughter
state of an “one-transverse-gluon” state needs to have the field contentZ̃3 f abcAc

µcb . For every “one-
transverse-gluon” state there should occur exactly one degenerate daughter state. This implies the
existence of a ghost-gluon bound state in the adjoint representation [11].In this sense the resulting
BRST quartet is strictly non-perturbative because the formation of boundstates cannot be described
with perturbation theory. The Faddev-Popov charge reflected 2nd parent state is then an antighost-
gluon bound state. In this context Landau gauge provides an advantageas compared to general
linear covariant gauges: In the limitξ → 0 the formalism becomes ghost-antighost-symmetric, and
thus the existence of a ghost-gluon bound state implies the occurrence of a degenerate antighost-
gluon bound state with same quantum numbers. Even having then the 2nd parent, the BRST
transformation (2.3) leaves then three possibilities for the 2nd daughter: a ghost-antighost bound
state, a ghost-antighost-gluon bound state, or a bound state of two differently polarized gluons.

Besides the almost trivial observation that, if a BRST quartet is generated by quarks it can
only be a non-perturbative one, containing a ghost-quark bound state as 1st daughter not much
is known about BRST quartets generated by quarks. It is also unknownwhether quarks violate
positivity. Although for light quarks dynamical chiral symmetry breaking (and for heavy quarks
explicit chiral symmetry breaking) determines the infrared behaviour of thequark propagator the
analytic structure of the quark propagator is highly sensitive to details in the quark-gluon vertex,
see,e.g., Ref. [12]. The quark-gluon vertex for light quarks is, on the other hand, also very strongly
influenced by dynamical chiral symmetry breaking [13, 14, 15]. The massgeneration for quarks
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related to chiral symmetry breaking depends strongly on details of the dynamics. Which mecha-
nism then guarantees that the corresponding bound states are degenerate with the quark states is
completely unknown. We therefore hope that an investigation of non-perturbative BRST quartets
at least partially will help to resolve these questions.

4. Properties of ghost-gluon bound states from infrared Landau gauge YM theory

By now quite some information on the infrared behaviour of Landau gauge YM theory is
available. Especially, in the deep infrared general properties have been deduced by employing func-
tional equations. Dyson-Schwinger equation studies have been extended from a previous analysis
of gluon and ghost propagators [16, 17, 18, 19, 20] to all Yang-Mills vertex functions [21, 22, 23].
Functional Renormalization Group Equations allow a further restriction on thesolution for the
Green’s functions: There is one unique scaling solution with power laws for the Green’s functions
[24, 25] and a one-parameter family of solutions, the so-called decouplingsolutions. The latter are
infrared trivial solutions which possess as an endpoint exactly the scaling solution characterized by
infrared power laws. Numerical solutions of the decoupling type (there called “massive solution”)
have been published in [26, 27] and references therein. A recent detailed description and compar-
ison of these two types of solutions has been given in Ref. [28], see alsoRefs. [29, 30, 31, 32].
Most lattice calculations of the gluon propagator favor a decoupling solution. However, in Ref. [33]
it has been suggested that the infrared behaviour of the Green’s function may depend on the non-
perturbative completion of the gauge.

The scaling solution respects BRST symmetry whereas every decoupling solution breaks it
[28], although very likely only softly. Being very strictly, the analysis as presented below will be
only valid if the scaling solution is a correct one. The situation is, however, not as severe as it
seems. First, if the conjecture of Ref. [33] is correct it is sufficient thatonly one non-perturbative
completion of Landau gauge with scaling solution exists to make the analysis of Ref. [11] well-
founded. Second, even if only decoupling type of solutions were correct an extended BRST-like
nilpotent symmetry is likely to take the role of the BRST symmetry [37], or the soft BRST sym-
metry breaking can be treated as spontaneous symmetry breaking [38], see also Ref. [39] and
references therein, as well as the discussion below. It is important to realize that all arguments
about infrared dominance of diagrams stay correct: The numerical valueof a diagram which is
infrared leading in the scaling solution will be large in a physically acceptable decoupling solution.

All one-particle irreducible Green’s functions in the scaling solution in the simplified case with
only one external spacelike scalep2 → 0 obey a simple power law. For a function withn external
ghost and antighost as well asmgluon legs one obtains:

Γn,m(p2) ∼ (p2)(n−m)κ . (4.1)

Hereby the best known value ofκ is calculated from truncated equations and is given byκ = 0.595
[18, 19]. The above solution fulfills all functional equations and all Slavnov-Taylor identities. It
verifies the hypothesis of infrared ghost dominance [34].

As already emphasized gluons violate positivity [1, 12]. For the scaling solution this can be
immediately deduced from the fact that for this solution the gluon propagator vanishes at zero
virtuality, p2 = 0, with an exponent 2κ − 1. It leads to an infrared diverging ghost propagator
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with exponent−κ −1 as well as infrared diverging three- and four-gluon vertex functions (−3κ
and−4κ, respectively). A further important property of the scaling solution is the infrared trivial
behaviour of the ghost-gluon vertex which is in agreement with general arguments [7, 19].

The ghost-gluon bound state is looked for in the ghost-gluon scattering kernel. To this end
we want to truncate this quantity to the infrared leading term. We use the MATHEMATICA pack-
age DoDSE [35, 36] to derive the diagrammatic expressions for the Dyson-Schwinger equation of
this four-point function. A diagram-by-diagram infrared power counting is performed by attribut-
ing anomalous infrared exponents to the internal legs and vertex functions. A ghost propagator
provides a−κ, a gluon propagator a 2κ, the vertex functions the powers cited above. It is some-
what lengthy but straightforward to verify that in the scaling solution the infrared exponent of the
ghost-gluon scattering kernel is−κ. More important, the infrared power counting also provides
the infrared leading terms.

With two different fields involved there are two distinct possibilities for the Dyson-Schwinger
equation according to which leg one puts the bare vertex. Placing the bare vertex to a ghost leg
provides a consistent infrared counting [11].

k1 µ k1 µ

=

P ρ P ρ

q1 q1

r

k2 ν

q2
σ

Γ
Γ

+

q1

k1 µ k2 ν

q2

P ρ
Γ

r

σ

Figure 3: Graphical representation of the gluon-ghost Bethe-Salpeter equation. Crosses denote dressed
vertices.

The truncation process for the diagrams on the r.h.s to be kept is: It shouldcontain the one-
particle irreducible ghost-ghost-gluon-gluon four-point function and no n ≥ 5-point function, it
should be infrared leading, and the interaction shall take place in the ghost-gluon channel. This
leaves two diagrams: One with two ghost and one gluon propagator on internal lines. This is
effectively a ghost exchange. And another one with two gluon and one ghost propagator on internal
lines. This is a gluon exchange. Note that this diagram is infrared leading because in the scaling
solution the fully dressed three-gluon vertex is infrared divergent.
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Assuming the existence of a bound state as well as employing the usual decomposition of the
(ghost-ghost-gluon-gluon) four-point function into Bethe-Salpeter amplitudes and performing the
expansion around the pole (seee.g.Sect. 6.1 of Ref. [40]) one arrives at the Bethe-Salpeter equation
depicted in Fig. 3. Using the propagator parameterizations ofe.g.Ref. [12], the ghost-gluon vertex
of Ref. [41], and the three-gluon vertex of Ref. [42] one can derive a self-consistent equation for
the corresponding Bethe-Salpeter amplitude containing otherwise only known quantities [11]. The
decisive property of the kernels of this Bethe-Salpeter equation are: For the upper diagram of the
r.h.s of Fig. 3 the kernel is well represented by

αgh(r2)/r2 with αgh(r2) =
g2

4π
G2(r2)Z(r2). (4.2)

(G andZ are the ghost and gluon renormalization function, respectively.) For the lower diagram
the corresponding expression is

√
αgh(r2)

√
α3g(r2)/r2 with α3g(r2) being proportional to the

square of the three-gluon vertex andZ3. As the coupling constant derived from the 3-gluon vertex
has a smaller infrared fixed point [42] than the one derived from the ghost-gluon vertex the upper
diagram will be dominant. Withαgh(0) = 8.92/Nc (seee.g. [43] or Sect. 2.3 of Ref. [44]) it
is evident that the kernel of the ghost-gluon Bethe-Salpeter equation is very strong. As typical
strengths for critical coupling constants are of the order of one (seee.g. Ref. [40]) one may even
speculate whether the kernel of this Bethe-Salpeter equation provides evidence for a dynamical
breaking of BRST symmetry. A very welcome side effect would be the relatedGoldstone nature
of the bound state guaranteeing masslessness.

5. On the quark-gluon bound state equation

The scaling solution for the YM Green’s functions leads to dynamical chiralsymmetry break-
ing in the quark sector [15]. The quark propagator is then infrared finite. The twelve possible Dirac
tensor structures of the quark-gluon vertex are then all infrared divergent with an infrared exponent
−κ −1/2. The same infrared divergence results for vanishing gluon momentum, and this leads to
an 1/k4 behaviour of the kernel in the four-quark function,k being the momentum exchange. This
is indicative of a linearly rising potential between static quarks, and thus quark confinement. Fur-
thermore, the Slavnov-Taylor identities require that the ghost-ghost-quark-quark scattering kernel
is infrared trivial, see Sect. 3.9 in Ref. [15].

Γ = Γ

p1 p1

q1 q1

k

q2

p2

P P

Figure 4: Graphical representation of the quark-ghost Bethe-Salpeter equation.

As in the ghost-gluon case one has two choices for the Dyson-Schwingerequation for the
quark-ghost scattering kernel according to which leg one puts the barevertex. Choosing a ghost
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leg to place the bare vertex is the infrared consistent choice [11]. Using the same truncation re-
quirements and the same derivation of the Bethe-Salpeter equation as in the previous subsection
one arrives at the equation depicted in Fig. 4. This equation is in full agreement with the infrared
analysis of the scaling solution,i.e. it is a valid bound state equation, and in its kernel the infrared
exponentκ cancels.

Furthermore, this kernel is well approximated by
√

αgh(k2)
√

αq−gl(k2)/k2 whereαgh(k2) is
defined above andαq−gl(k2) is proportional to the square of the quark-gluon vertex andZ. As
αq−gl(k2) ∝ 1/k2 the above remarks of the super-criticality of the kernel equally apply.

6. Conclusions and outlook

In these notes we briefly reviewed the concept of BRST quartets, and weemphasized the
different roles of the perturbative and non-perturbative BRST quartets. We have discussed a pos-
sibility how the non-perturbative BRST quartets generated by transversegluons and quarks can be
studied quantitatively.

To complete this project many open questions still needs to be answered: What are the bound
states representing the respective 2nd daughters? Is BRST spontaneously broken? Are there as-
sociated Goldstone bosons or fermions? Can a solution of the homogeneousor inhomogeneous
Bethe-Salpeter equation provide information on the positivity or positivity violation for quarks?
And what is then the relation to quark confinement?
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