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1. Introduction

Neutron stars’ oscillations have been investigated for over almost 50 years (since the work of
Chandrasekhar in 1964 [1]) using various equations of state (EOS) for nuclear matter and quark
matter. The first exhaustive compilation of radial modes for various zero temperature EOSs was
presented by Glass & Lindblom in 1983 [2]. Later studies by Väth & Chanmugan [3] comple-
mented and corrected earlier studies and also considered the case of strange quark stars. Further
work by Kokkotas & Ruoff [4] presented a new survey of the radial oscillation modes of neutron
stars. Their study includes an extensive list of frequencies for the most common equations of state.
Radial pulsations were also considered in the case of newborn neutron stars (protoneutron stars) by
Gondek et al. [5]. They found that the spectrum of the lowest modes of radial pulsations of proto-
neutron stars is quite different from that of cold neutron stars. Generally, protoneutron stars are
significantly softer with respect to the radial pulsations, than cold neutron stars, and this difference
increases for higher modes and for lower stellar masses [5]. These differences stem from different
structure of proto-neutron stars, which in contrast to cold neutron stars have extended envelopes,
inflated by thermal and trapped neutrinos effects.

Radial oscillations were also studied in the case of quark stars. Stars containing quark phases
fall into two main classes: hybrid stars (where quark matter is restricted to the core) and strange
stars (made up completely by quark matter). It is expected that both kinds of stars cannot exist
simultaneously in Nature, but it is not know which one would be realized (if any). This depends on
whether the energy per baryon of β -equilibrated quark matter at zero pressure and zero temperature
is less than the neutron mass (the so called “absolute stability” condition [6, 7]). Analysis made
within the MIT bag model shows that there is a room in the parameter space for the existence of
strange stars. Moreover, color superconductivity enlarges substantially the region of the parameter
space where β -stable quark matter has an energy per baryon smaller than the neutron mass [8, 9].
As a consequence, a “color superconducting strange matter” is allowed for the same parameters
that would otherwise produce unbound strange matter [8]. On the other hand, within a Nambu-
Jona-Lasinio (NJL) description of quark matter, the strange matter hypothesis is not favored, at
least for the most accepted parameterizations of the EOS [10]. Thus, stars containing quark phases
are believed to be hybrid stars within the NJL model.

Several works have dealt with the problem of radial oscillations of strange and hybrid stars
[3, 11, 12, 13, 14, 16, 15]. Väth & Chanmugan [3] showed that the oscillation frequencies of
strange stars have qualitatively a different dependence on the central density compared with the
case of neutron stars, as the periods of all modes go to zero when the central density of the strange
star approaches its smallest possible value. Benvenuto & Horvath [11] also presented calculations
of radial oscillations of homogeneous strange stars, using a parameterized form of the equation
of state. They showed that the particular form of the equation of state allows some simple and
general scaling relations which may prove to be very useful for the search of these objects. Strange
stars have been mostly studied in the framework of the MIT bag model, but some work has been
made using other microphysical description of quark matter. In particular, Benvenuto and Lugones
[12] studied the radial oscillations of strange stars in the Quark-Mass Density-Dependent model
[17, 18] (QMDD model). Their results showed that oscillation periods are similar to those obtained
within the MIT bag model. Recently, Anand et al. [13] studied the radial oscillations of magnetized
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strange stars in the QMDD model showing that the squares of the frequencies are always decreasing
functions of the central density of the strange star. In a similar way Singh et al. [14] investigated
the radial oscillations of rotating strange stars in strong magnetic fields in the QMDD model. They
showed that the difference in frequency between rotating and non-rotating stars is larger for higher
magnetic fields. The change is small for low mass stars but it increases with the mass of the star.
This change of frequency is significant for the most massive stars whereas it is marginal for a 1.4
M� star.

In the case of hybrid stars Gupta et al. [15] studied the effect of a mixed quark-nuclear matter
core on radial oscillations. They found that the effect of the mixed phase is to decrease the max-
imum mass of the stable neutron star and to cause a kink in radial oscillation frequencies at the
onset of the mixed phase. This kink can be traced to a slight kink in the density profile as well as
in the EOS for neutron stars having a mixed quark-hadron phase [15]. Their results appears to be
robust and independent of the EOS. Gondek and Zdunik [16] also studied radial pulsations of neu-
tron stars and strange quark stars with a nuclear crust. They used neutron star models constructed
using a realistic equation of state of dense matter and strange star models using a phenomenologi-
cal Bag model of quark matter. They calculated the eigenfrequencies of the three lowest modes of
linear, adiabatic pulsations and found an avoided crossing phenomenon that is strongly related to
the changes of compressibility of the matter throughout the star.

In this work we shall focus on the radial oscillations of strange quark stars paying particular
attention to the effect of color superconductivity, which for the best of our knowledge, has not been
taken into account yet in the literature. In particular, we shall consider the effect of color-flavor
locking within the frame of the MIT bag model. The paper is organized as follows: in Sec. II
we present the equation of state of the CFL phase and find simple analytical expressions for the
relevant thermodynamical quantities. In Sec. III we study the radial oscillations of CFL strange
stars and we calculate the fundamental and first excited modes for different values of the parameters
of the EOS. In Sec. IV we discuss our results.

2. Thermodynamics of the CFL phase

As mentioned before, we work here within the hypothesis that quark matter is absolutely
stable and thus quark stars are completely made up by an almost symmetric mixture of up, down
and strange quarks. At sufficiently large densities and low temperatures quark matter is a color
superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near
the Fermi surface [19]. Color superconducting quark matter can come in a multiplicity of different
phases, based on different pairing patterns of the quarks. At asymptotically large densities, where
the quark masses are negligibly small compared to the quark chemical potential, three-flavor quark
matter is in the color-flavor locked (CFL) state [20]. In this state quarks form Cooper pairs of
different color and flavor where all quarks have the same Fermi momentum and electrons cannot be
present [21]. Color-flavor locking has a profound effect on the properties of quark matter, mainly
on transport properties such as mean free paths, conductivities and viscosities. Concerning the
equations of state, the effects enter as a term of order (∆/µ)2 which is of a few percent for typical
values of the color superconducting gap (∆ ∼ 0− 150 MeV) and the baryon chemical potential
(µ ∼ 300−400 MeV). However, the effect is proportionally very large in the low pressure regime
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that affects the absolute stability of quark matter. Thus, pure self-bound quark-matter stars (strange
stars) may exist for a wider range of parameters of the MIT Bag model equation of state [8]. This
affects considerably the mass-radius relationship of CFL stars, allowing for very large maximum
masses [9, 22].

The equation of state for CFL quark matter can be obtained in the framework of the MIT bag
model. To order ∆2, the thermodynamical potential ΩCFL reads [8]

ΩCFL = Ωfree−
3

π2 ∆
2
µ

2 +B, (2.1)

being Ωfree the thermodynamical potential of a state of unpaired u, d and s quarks in which all them
have a common Fermi momentum ν , with ν chosen to minimize Ωfree. The binding energy of the
diquark condensate is included by subtracting a condensation term proportional to ∆2µ2 where the
chemical potential µ ≡ (µu + µd + µs)/3 is related to ν through ν = 2µ − (µ2 + m2

s/3)1/2, being
ms the mass of the strange quark. Confinement is introduced through a phenomenological vacuum
energy density or bag constant B.

From the ΩCFL given above we can obtain the following expressions for the pressure p and the
energy density ε to order m2

s [8]:

p =
3µ4

4π2 +
9αµ2

2π2 −B, (2.2)

ε =
9µ4

4π2 +
9αµ2

2π2 +B, (2.3)

where

α =−m2
s

6
+

2∆2

3
. (2.4)

In order to have the EOS in the form ε = ε(p), we can invert Eq. (2.2) to find µ as a function of p

µ
2 =−3α +

[
4
3

π
2(B+ p)+9α

2
]1/2

, (2.5)

and we can write ε = ε(p) from Eqs. (2.2) and (2.3)

ε = 3p+4B− 9αµ2

π2 , (2.6)

with α and µ given by Eqs. (2.4) and (2.5) respectively.
If we need p = p(ε) we may write

p =
ε

3
− 4B

3
+

3α µ2

π2 , (2.7)

with µ given by

µ
2 =−α +

[
α

2 +
4
9

π
2(ε−B)

]1/2

. (2.8)

For the oscillation equation (see Sec. III) we need the adiabatic index Γ = (ε + p)p−1d p/dε .
From Eq. (2.7) we have

d p
dε

=
1
3

+
6αµ

π2
dµ

dε
. (2.9)
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The derivative dµ/dε can be calculated from Eq. (2.8): dµ/dε = π2(9µ)−1[α2 +4π2(ε−B)/9]−1/2.
Thus, we have

d p
dε

=
1
3

+
2α

3

(
1

µ2 +α

)
, (2.10)

which allows to write the adiabatic index Γ as function of p using Eq. (2.5) or as a function of ε

using Eq. (2.8).
Since the values of B, ms and ∆ are not accurately known we shall consider them as free

parameters in the equation of state. We emphasize that all the values of B, ms and ∆ employed in
this paper fall inside the stability windows presented in Fig. 2 of Ref. [8]; i.e. we always obtain
strange stars when integrating the stellar structure equations.

3. Radial Pulsations of CFL stars

In this section we shall study the radial oscillations of strange quark stars employing the equa-
tion of state of the previous section. We shall consider the unperturbed star to be composed of a
perfect fluid, whose stress-energy tensor takes the form

Tµν = (ε + p)uµuν + pgµν . (3.1)

The generic background space-time of a static spherical star is expressed through the line
element

ds2 =−eν(r)dt2 + eλ (r)dr2 + r2(dθ
2 + sin2

θdφ
2). (3.2)

The Einstein equations in such a spacetime lead to the following set of stellar structure equations
(Tolman-Oppenheimer-Volkoff equations)

d p
dr

=−εm
r2

(
1+

p
ε

)(
1+

4π pr3

m

)(
1− 2m

r

)−1

, (3.3)

dν

dr
=−2

ε

d p
dr

(
1+

p
ε

)−1

, (3.4)

dm
dr

= 4πr2
ε, (3.5)

where m is the gravitational mass inside the radius r. The metric function ν has the boundary
condition

ν(r = R) = ln
(

1− 2M
R

)
, (3.6)

where R is the radius of the star and M its mass. With this condition the metric function ν(r) will
match smoothly to the Schwarzschild metric outside the star.

To obtain the equations that govern radial oscillations, both fluid and spacetime variables are
perturbed in such a way that the spherical symmetry of the background body is not violated. These
perturbations are inserted into the Einstein equations and into the energy, momentum and baryon
number conservation equations and only the first-order terms are retained.
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Several forms of the oscillation equation have been presented in the literature. The original
form presented by Chandrasekhar [1] constitutes a Sturm-Lioville problem whose solution provides
the eigenvalues and the eigenfunctions for the radial perturbations (see eq. (59) of Ref. [1]). The
second order oscillation equation given by Chandrasekhar can be split into two first order equations.
This has been done by Vath and Chanmugan [3] who derived a set of first order equations for the
quantities ∆r/r and ∆p/p (see eqs. (9) and (10) of Ref. [3]). More recently, Gondek et al. [5]
obtained a similar set of equations but for the relative radial displacement ∆r/r and the Lagrangian
perturbation of the pressure ∆p (see eqs. (11) and (12) of Ref. [5]). All these sets of equations
are equivalent. In this work, we adopted the equations of Gondek et al. [5], because this system
is particularly suitable for numerical applications and the boundary condition at the star’s surface
can be obtained by purely physical arguments. Another important advantage of this system of
oscillation equations stems from the fact that they do not involve any derivatives of the adiabatic
index, Γ. Adopting G = c = 1 the system of equations is

dξ

dr
=−1

r

(
3ξ +

∆p
Γp

)
− d p

dr
ξ

(p+ ε)
, (3.7)

d∆p
dr

= ξ

{
ω

2eλ−ν(p+ ε)r−4
d p
dr

}
+ξ

{(
d p
dr

)2 r
(p+ ε)

−8πeλ (p+ ε)pr
}

(3.8)

+∆p
{

d p
dr

1
(p+ ε)

−4π(p+ ε)reλ

}
,

where ω is the eigenfrequency and the quantities ξ ≡ ∆r/r and ∆p are assumed to have a harmonic
time dependence ∝ eiωt .

To solve equations (3.7) and (3.8) one needs two boundary conditions. Since the solutions are
regular at the star’s center, we can expand ξ and ∆p in Taylor series about r = 0

ξ (r) = ξ (0)+ rξ
′
(0)+

r2

2
ξ
′′
(0)+ ... (3.9)

∆p(r) = ∆p(0)+ r∆p
′
(0)+

r2

2
∆p

′′
(0)+ ... (3.10)

where ′ = d/dr. With the expressions above and Eq. (3.7) we find

r[ξ
′
(0)+ rξ

′′
(0)+ ...] =−

(
3[ξ (0)+ rξ

′
(0)+ ...]

+
[∆p(0)+ r∆p

′
(0)+ ...]

Γ(0)p(0)

)
− r

d p
dr

[ξ (0)+ rξ
′
(0)+ ...]

(p(0)+ ε(0))
.

When r −→ 0, we obtain ∆p(0) =−3ξ (0)Γ(0)p(0). Thus, the boundary condition at the center of
the star can be written as:

(∆p)center =−3(ξ Γp)center. (3.11)

Notice that the eigenfunctions can be normalized in order to have ξ (0) = 1. The surface of the star
is determined by the condition that for r −→ R, one has p−→ 0. This implies that the Lagrangian
perturbation in the pressure at the surface is zero. Therefore the second boundary condition is

(∆p)sur f ace = 0. (3.12)

6
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Figure 1: The period of the fundamental oscillation mode (in milliseconds) as a function of the mass M
and the central energy density εc of the CFL strange star. In the upper panels the results are shown for CFL
strange stars with ∆ = 100 MeV and different values of the bag constant B and the strange quark mass ms. B
is given in MeV fm−3 and ms in MeV. Dashed lines correspond to ms = 0 and solid lines to ms =150 MeV. In
the lower panels the results are shown for hadronic stars employing the Bethe-Johnson EOS (BJ), for strange
stars without color superconductivity (MITnp), and for CFL strange stars with ∆ = 50,100,150 MeV. The
strange quark mass is set to ms =150 MeV. In the left lower panel we fix the value of B to 60 MeV fm−3 and
in the right lower panel to 100 MeV fm−3.

In order to numerically solve the oscillation equations we proceed as follows. First, we in-
tegrate the Tolman-Oppenheimer-Volkoff equations for each set of the parameters of the equation
of state (B, ms and ∆) in order to obtain the coefficients of the oscillation equations for a given
central pressure. Then we solve the oscillation equations by means of the shooting method: we
start the numerical integration of Eqs. (3.7) and (3.8) for a trial value of ω2 and a given set of
initial values of ξ (r = 0) and ∆p(r = 0) which satisfy at the center the boundary condition given
above. The equations are integrated outwards trying to match the boundary condition at the star’s
surface. After each integration, the trial value of ω2 is corrected in order to improve the matching
of the surface boundary condition until the desired precision is achieved. The discrete values of ω2

for which Eq. (3.12) is satisfied are the eigenfrequencies of the radial perturbations. Our code was
able to reproduce the results of Vath & Chanmugam [3] and of Kokkotas & Ruoff [4].

Our results are shown in Figs. 1−4 for different values of the parameters B, ms and ∆ of
the equation of state (falling inside the stability windows presented in Fig. 2 of Ref. [8]). In
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Figure 2: Same as Fig. 1 but for the period of the first excited mode.

Figs. 1 and 2 we show the period of the fundamental and the first excited modes of CFL strange
stars as a function of the stellar mass M and the central energy density εc. The effect of color
superconductivity has two aspects. By one hand, for a fixed mass of the star the period of the
fundamental mode is smaller as ∆ increases. On the other hand, the maximum mass of the star
increases significantly for large values of ∆. As a consequence, the oscillation period is largely
affected by color superconductivity for stars with masses near the maximum mass. Notice that
while other EOS parameters such as B or ms can have similar effects on the oscillation periods, the
effect of varying ∆ is much stronger. For example, the period of the fundamental mode of stars
with M . 1.5 M� is almost independent of the value of B and ms but changes up to a factor of ∼ 2
in the here-considered range of ∆. In Figs. 3 and 4 we show the period of the fundamental and the
first excited modes as a function of the gravitational redshift z at the surface of the compact star.
The effect of ∆ is similar to the observed in the plots of τ versus M (c.f. Figs. 1 and 2).

For comparison, the calculations were also performed for hadronic stars described by the
Bethe-Johnson EOS [23] and for quark stars without color superconductivity. For low mass stars
there is a large difference between the oscillation periods of hadronic stars and quark stars, as al-
ready known from previous calculations without color superconductivity (see lower panels of Figs.
1 and 2). The difference is also large for high mass stars but this is due to the difference between
the maximum mass in different models. A similar behavior is found in the plots of τ versus z (see
Figs. 3 and 4).
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Figure 3: The period for the fundamental oscillation mode as a function of the gravitational redshift z at the
surface of the CFL strange star. In the left panel the results are shown for CFL strange stars with B = 60
MeV fm−3, ms = 150 MeV and different values of ∆. We also show the curves for hadronic stars employing
the Bethe-Johnson EOS (BJ) and for strange stars without color superconductivity (MITnp). In the right
panel the results are shown for CFL strange stars with ∆ = 100 MeV and different values of B (dashed lines
correspond to ms = 0 and solid lines to ms = 150 MeV).
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Figure 4: Same as Fig. 3 but for the period of the first excited oscillation mode.

4. Discussion

In this work we have presented a study of the radial pulsational properties of strange quark
stars, paying particular attention to the effect of color superconductivity. We have shown that
the effect of color flavor locking into the oscillation periods is different for low mass stars (with
M . 1.5 M�) and for large mass stars (with M & 1.5 M�).

For low mass stars the period of the fundamental mode τn=0 is typically ∼ 0.1 ms. For a fixed
M, τn=0 is almost independent on the value of B and ms but decreases up to a factor of ∼ 2 as ∆

goes from 0 to ∼ 100 MeV.
For large mass stars the effect of color flavor locking is related to the rise of the maximum

mass with increasing ∆. As for unpaired quark stars, τn=0 becomes divergent at the maximum mass
but now the divergence is shifted to large masses for large values of ∆. As a consequence, the
oscillation period is strongly affected by color superconductivity for M & 1.5 M�.
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It is well know that the periods of radial oscillations of strange stars behave very differently
from those of hadronic stars [3], specially for low mass stars. This difference is amplified by color
superconductivity because the oscillation periods tend to be smaller as the pairing gap ∆ increases.
Also, as for unpaired strange stars, the oscillation periods go to zero when the central energy density
moves towards the smallest possible value εmin for which the pressure is zero (see Eq. (2.6)). This
can be understood by noticing that low-mass quark stars are very well described as non-relativistic
constant-density spheres, which have oscillation periods proportional to the adiabatic index Γ (for
the fundamental mode we have ω2

0 = 4πGρ(4Γ− 3)/3 [23]). Since the pressure tends to zero
everywhere for a quark star with ε ∼ εmin, the adiabatic index Γ = (ε + p)p−1d p/dε tends to
infinity, ω2 diverges, and the oscillation period tends to zero. This behavior is clear in the right
upper panels of Figs. 1 and 2.

In addition to knowing the spectrum of pulsations for a given internal composition, it is impor-
tant to realize whether the resulting modes are able to survive for a sufficiently long time provided
they are excited in any astrophysically realistic situation. In principle, radial pulsations could be ex-
cited during a variety of catastrophic events taking place during the compact star’s life. Starquakes
and stellar collisions are potential mechanisms if enough energy is transferred to vibrational modes.
However, it has been shown that radial pulsations of quark stars are quickly damped due to the
enormous bulk viscosity of hot unpaired quark matter [24, 25]. The volume oscillation forces the
system out of chemical equilibrium with respect to the non-leptonic process u+d↔ u+ s and the
semi-leptonic processes u+ e−↔ d +νe and u+ e−↔ s+νe. In general, semi-leptonic processes
are slower than the non-leptonic one, and the most effective damping reaction in unpaired quark
matter is u + d ↔ u + s [24, 26]. Since u and d quarks are essentially massless while ms ∼ 150
MeV, the forward rate of u + d↔ u + s cannot keep equal to the reverse rate and the system can-
not keep in equilibrium during oscillations. This leads to irreversible processes and damping in
unpaired quark matter. For a typical stellar oscillation time of 10−3 s, high amplitude oscillations
are damped in fractions of a second due to the non-leptonic process [27]. As a consequence, the
detection of any signal related to radial stellar vibrations looks unlikely if quark matter is unpaired.

Still, in the CFL phase the contributions to the bulk viscosity from the above processes are
exponentially suppressed [28]. The thermodynamic and hydrodynamic properties are rather deter-
mined by the massless superfluid phonons ϕ and thermally excited light pseudo-Nambu-Goldstone
bosons. The contribution to bulk viscosity from phonons alone (ϕ↔ ϕ +ϕ) has been calculated in
[29]. For T & 0.1 MeV and a typical oscillation period τ = 1 ms, the resulting transport coefficient
ζ ϕ is more than 10 orders of magnitude smaller than for unpaired quark matter.

However, depending on the poorly known value for δm≡ mK0 −µK0 , the dominant contribu-
tion to the bulk viscosity may come from weak equilibrium processes involving the neutral kaon
K0 and the bosons ϕ , e.g. K0↔ ϕ +ϕ and K0 +ϕ ↔ ϕ [30, 28]. For oscillations with a timescale
of milliseconds and temperatures above a few MeV, the bulk viscosity ζ K0

can become larger than
for unpaired quark matter (see [28] and references therein). However, ζ K0

is much less than that of
unpaired quark matter for low temperatures. For example, for T ∼ 0.1 MeV and δm = 0.1 MeV,
ζ K0

is more than six orders of magnitude smaller than ζ for unpaired matter. Since the dissipation
time scale is τ ∝ ζ−1 [25, 27] we expect that radial oscillations of CFL stars would last for several
seconds and are potentially observable after a catastrophic event involving the quark star.

Additionally, we must keep in mind that the spherical symmetry is broken if the star is subject
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to rotation causing a non-zero varying quadrupole moment that generates gravitational radiation
[31]. This energy sink has a characteristic timescale∼ 103 P4 yr, where P is the period of rotation in
seconds. Thus, while the persistence of primordial radial pulsations should not be expected, some
fingerprints of radial oscillation modes could emerge in future observations of violent transient
phenomena.
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