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The equation of state inside very compact objects like nawtars is still largely unkown. Even
though a lot progress has been made in recent years to delelsp-called realistic equations of
state, a lot of insight can be gained by using polytropic &qna of state to integrate the stellar
equations of structure. In this work we provide a brief rewf the Newtonian and relativistic
equations of structure and present some numerical resitish we believe that can be useful
for students starting to work on this field. The internal stawe of the Newtonian polytropes
is obtained by the numerical integration of the Lane-Emdgmeaé&on, and we used our results
which can also be used to study the Chandrasekhar limit fatevdwarfs. However, Newtonian
physics cannot correctly describe very compact and masbjeets. There is an upper mass limit
for neutron stars, supported by observations, which is restipted by the Newtonian equations.
Neutron stars are best described under the framework ofr@leRelativity. The introduction of
the TOV equations (as well as the relativistic Lane-Emdaméqns) is, therefore, necessary to
correctly identify stable and non-stable models via thegwraslius relation. The analysis of the
EoS also becomes relevant to discard models that allow abp@ssolation of causality (sound
speed larger thag).
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1. Introduction

The current period of discoveries in the fields of Physics allows theisiiqa of knowl-
edge and understanding of physical phenomena previously unkr@asmology, for instance, is
no different. The accelerated expansion of the universe, the emtuelated terms energy and
dark matter, the possible emission of gravitational waves in binary systemsgjastitars are the
new phenomenology present nowadays. Amongst this phenomenoldiyieedity, one can also
highlight an object of fundamental importance to the physical verificatiografitational waves
emission: neutron stars. Thus, the study of these compact objects is intpartae substantiation
of predictions made based on the theory of General Relativity [1].

Accurate models of neutron stars are still under development. The eqoéstate of matter
in the extreme conditions found in the center of those objects remains unkmbwere is a variety
of factors that can be taken into account. The existence of a solid crughetiafields, rotation
and superfluidity are just a few of them[1]. The study of neutron stareietbre highly interdis-
ciplinary, covering many areas of Physics. Nevertheless, it is negasseheck whether models
derived from different assumptions and simplifications are physicallgistent and correct. Due
to its high compactness it is natural that neutron stars are studied undeairttenork of General
Relativity.

In this work we have studied the non-relativistic (Newtonian) and relativiséitar equations
of structure with a polytropic equation of state, and numerical results witegned with a MAT-
LAB code. Although these results are not new in the literature, we believéhthaompilation of
the relevant equations and some numerical results will be useful forgtustarting on this field.

The paper is organized as follows. Section 2 briefly review the relevardtions for stellar
structure used in this paper. In Section 3 we present the numerical restdised for relativistic
and non-relativistic polytropes and finally in Section 4 we present ourriénaarks.

2. Stellar equations of structure

2.1 Non-relativistic stars

A non-relativistic star in equilibrium can be described by the equations

dP _ GM(r)p(r) 2.1)

dr — 2z
r

M(r) = / 4rprdr, (2.2)
0

wherer is the radial coordinate inside the staiis the densityp is the total mass density ahdi(r)
is the total mass inside a radiusAn equation of stat€(p) also needs to be supplied, and we use
a polytropic equation of state of the form

P=Kp’, y:1+% (2.3)

wheren the polytropic index andk may be established by specifying the density and pressure at
the center.
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Introducing the new variablesandy defined by the system
X

r = A (2.4)
p = Pcyn(x)v (25)
where
n171/2
B 4GP "
A= {(V‘Jrl)K] , (2.6)

one can use egs. (2.1), (2.2) and (2.3) to obtain the Lane-Emden equation
1d /[ .dy _
x2dx<x dx) +y'=0. (2.7)

The Lane-Emden functions are the solutions of eq. (2.7) with initial condityg@s= 1 and
d(0) = 0. On the surface of the stafR) = ARandy(R) = 0.

After solving the Lane-Emden equation (2.7) for a given value of the papitrindexn, we
can fix the radiu®k and the total maski(R) of the star. The parametéris fixed by the relation
X(R) = AR, the central density is given by

B M(R)A3
and the constar can be obtained from eq. (2.6). Finally(r) andp(r) are given by eqgs.(2.5)
and (2.3).

2.2 Relativistic stars

In the relativistic treatment, eq. (2.1) is replaced by the Tolman-Oppenhé&fotiatf (TOV)
equation given by

dP  GM+4nGr3p/c? P
S dr - r2(1—2GM/c?r) < c2> '
The relativistic Lane-Emden equation can be obtained by introducing theimegnsionless
coordinates (similarly to what was done in the non-relativistic case):

(2.9)

¢ = Ar, (2.10)

3
VE) = g (). 211)
(&) = SC. 2.12)

With the definitions (2.10), (2.11) and (2.12) and the equation of state €48),(2.2) and
(2.9) can be rewritten as

dv

g - £%0", (2.13)
,d6  (v+06&dv/dé)(1+00)
—¢ df§ ~ 1-20(n+1)v/E (2.14)
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xR | ¥Y(R)
2.4502 | -0.8167
3.1400 | -0.1061
4.3526 | -0.1273
6.8966 | -0.0424
14.9716| -0.008

A W DN OIS

Table 1: Values obtained fox(R) andy'(R) from the integration of the Lane-Emden equation.

where
R Kp'"
T opt 2

, (2.15)

andPR; is the central pressure. In the non-relativistic limit—+ 0, egs. (2.13) and (2.14) can be
recombined to give the Lane-Emden equation (2.7) withé andy = 0.

The relativistic Lane-Emden functions are the solutions of egs. (2.13add) with the
initial conditionsB(0) = 1 andv(0) = 0. The surface of the star is represented by the first gero
of 6.

Having solved egs. (2.13) and (2.14) for given values ahdo, one can choose a value of
to fix the other parameters of the solution and the equation of state.

3. Numerical results

We developed a MATLAB code to solve the Lane-Emden equation (2.7) lataghathe stellar
structure inside the polytrope [3]. Some relevant quantities obtained fhate Emden functions
with different values oh are listed on table 1.

On figure 1, we present some typical results obtained foe=e8 polytrope (usually refered to
as the standard model), representing a stabof and R, with p. = 76,46g/cn?® andK = 3.84 x
10"dyncn?/g*/3. We point out that a white dwarf can also be modelled as-a3 polytrope. In
a white dwarf, the electron degeneracy pressure provides the meastaliitizing the star against
its gravitational radiation, and the equation of state of a relativistic degeraetron gas is of the
from p = Kp%3. Note that from egs. (2.8) and (2.6) it can be shown thanfer3 the total mass
M(R) is independent from the central densfy, which corresponds to the Chandrasekhar limit
for white dwarfs [5]. These stars have a mass less than the Chanuzadiekit of approximately
1.4M., and radius of the order of $&m [4].

After a low or medium mass star has finished burning most of its hydrogemelndn, it
can become a white dwarf. At this stage, if the star has a mass below that©h#imelrasekhar
limit, the collapse is limited by the degeneracy pressure of electrons (the Relukien principle),
resulting in a stable white dwarf. However, if the star does not have ang fuel to maintain its
production of energy and has a mass greater than the Chandrasekhahémitessure exerted by
the electrons is not sufficient to withstand the force of gravity and the etkpses. Its density
will increase dramatically, leading to the formation of a neutron star or blatk'n®, 7]. The

1t is also possible the formation of a quark star. However, this is a theafstiution and will not be addressed in
this project.
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Chandrasekhar limit is a result from the effects predicted by Quantunmduécs considering the
behavior of electrons that cause the degeneracy pressure of a whitke Electrons, as fermions,
cannot occupy the same energy level, i.e., cannot be described byntieegsmntum numbers.
Thus, in white dwarfs, a large amount of electrons are at higher eseagiesing a certain amount
of pressure capable of sustaining the star. For a mass greater than the kntiegdnerescence
pressure becomes insufficient to prevent the imminent contraction of theSuafar, no white
dwarf with mass greater than the Chandrasekhar limit has been obs8fved [
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Figure 1. Numerical results obtained fgfx) (solid line) anddy/dx (dotted line) withn = 3, and radial
behavior of the densitp, pressurep and mas$ of a star with M and R,

In the relativistic treatment, we have extended our calculations, including alktudts pre-
viously done, to stiffer (incompressible mattar— 0) EoS. The results obtained are presented
in tables 2-4. For any solution with given valuesmfo and and a chosen value pf, we can
determineK from eq. (2.15), and we can obtaRandM (R) with

R= A&, (3.1)
N =07 v(&), (3.2)
4mp, n+ 1) [ K\"Y2 .

From these results it is possible to verify which solutions are stable andlcatee velocity

of low frequency sound waves is given /= g—i = %P = c2y(P/pc?). At the stellar center where
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o é1 v(é1) M o &1 v(é1) M
0.0| 6.8966 | 2.0182| 2.0182| 0.0| 4.3531| 2.411 0.0
0.1| 6.8264 | 1.0785| 1.0785| 0.1 | 3.6989| 1.2987| 0.4107
0.2| 7.9494 | 0.713 | 0.713 || 0.2 | 3.3983| 0.8403| 0.3758
0.3| 10.8346 | 0.5386| 0.5386| 0.3 | 3.271 | 0.6055| 0.3316
0.4| 17.8244 | 0.4516| 0.4516| 0.4 | 3.2473| 0.468 | 0.296
0.5| 37.2163 | 0.4214| 0.4214| 0.5 | 3.2967| 0.38 | 0.2687
0.6 | 91.0674 | 0.4493| 0.4493| 0.6 | 3.3986| 0.3201| 0.2479
0.7 | 162.6175| 0.5266| 0.5266|| 0.7 | 3.5469| 0.2773| 0.232
0.8| 187.233 | 0.5969| 0.5969| 0.8 | 3.7334| 0.2457| 0.2197
0.9| 187.029 | 0.6375| 0.6375| 0.9 | 3.9539| 0.2216| 0.2102
1.0 | 183.6571| 0.657 | 0.657 || 1.0 | 4.2027| 0.203 | 0.203

Table 2: Lane-Emden relativistic functions parametersriet 3.0 (left) andn = 2 (right).

P/pc? achieves its maximum value, V2 = c?yo. If 0 > 1/y, the speed of sound would exceed
that of light and the fluid inside the star could violate causality.

Both M andM increase witho until a valueocg, as can be seen in figure 2 floe= 1. Since
dm/dp; > 0 is a necessary condition for stabilitgggr marks the onset of the first mode of radial
instability [9].
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Figure 2: M as a function ofo for n= 1. We can see thaicg ~ 0.42 separates stable (< ocgr) and
unstable modelsx > ocR)

4. Final remarks

The present work enabled the acquisition of fundamental knowledgevidogemodels of
Newtonian and Relativistic stars. Through the implementation of numerical nse#ifodg with
literature review, it was possible to obtain results that simulate the intra-stelldummehd to
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o é1 v(é1) M o &1 V(&) M
0.0 | 3.1416| 3.1416| 0.0 0.0| 2.7523| 3.786 0.0
0.1| 2.5989| 1.7514| 0.1751| 0.1 | 2.2898| 2.1735| 0.1222
0.2| 2.277 | 1.1426| 0.2285| 0.2 | 2.0008| 1.4358| 0.192
0.3| 2.0642| 0.8192| 0.2457| 0.3 | 1.8013| 1.035 | 0.2298
0.4| 1.9133| 0.6249| 0.25 0.4| 1.6544| 0.791 | 0.2516
0.5| 1.8008| 0.4981| 0.2491| 0.5| 1.5409| 0.6295| 0.2647
0.6 1.7143| 0.4101| 0.246 || 0.6 | 1.4503| 0.5164| 0.2727
0.7 | 1.6458| 0.3461| 0.2423| 0.7 | 1.3759| 0.434 | 0.2779
0.8 | 1.5903| 0.2979| 0.2383| 0.8 | 1.3136| 0.3717| 0.2812
0.9] 1.5447| 0.2605| 0.2344| 0.9 | 1.2604| 0.3231| 0.2833
1.0 | 1.5066| 0.2307| 0.2307| — — — —

Table 3: Lane-Emden relativistic functions parametersriet 1.0 (left) andn = 0.5 (right).

o &1 v(é1) M o &1 v(é1) M
0.0 | 2.504 | 4.6089 0.0 0.0 | 2.4508| 4.9071| 0.0
0.1] 2.1037| 2.7308| 0.09689( 0.1 | 2.0642| 2.9318| 0.0927
0.2 1.8438| 1.8377| 0.1781 | 0.2 | 1.8113| 1.9807| 0.1772
0.3 1.6593| 1.3367| 0.2333 || 0.3 | 1.6306| 1.4452| 0.2375
0.4 ] 1.5202| 1.0254| 0.2716 || 0.4 | 1.4938| 1.111 | 0.2811
0.5] 1.4108| 0.8172| 0.2991 || 0.5| 1.3856| 0.8867| 0.3135
06| 1.322 | 0.671 | 0.3199 || 0.6 | 1.2976| 0.7283| 0.3385
0.7 ] 1.2482| 0.5634| 0.3359 || 0.7 | 1.2241| 0.6114| 0.3581
0.8 ] 1.1856| 0.4816| 0.3485 || 0.8 | 1.1616| 0.5225| 0.3739
0.9 1.1317| 0.4176] 0.3585 | 0.9| 1.1078| 0.4532| 0.3869
— — — — 1.0| 1.0606| 0.3977| 0.3977

Table 4. Lane-Emden relativistic functions parametersriet 0.1 (left) andn = 0.0 (right).

verify the main physical properties of polytropic stars. As for the simulatitiesresults obtained
show a very good agreement when compared to previous results folitetature. The classic
study of the polytrope of inder = 3 allowed us to determine important physical characteristics
such as the maximum mass limit and relate it to a phenomenon well known to the wiaites,d
the Chandrasekhar limit. From this, it was possible to understand the caricgyenerate matter
and its relation to gravitational collapse.

However, the verification that Newtonian equations do not correctly extha behavior of
stellar masses for different radii has become essential. Newtonian etudéscribe the behavior
of masses through an indefinite growth whereas General Relativity gowigdnaximum value of
mass for each equation of state. It is, therefore, necessary to useisétacorrections for an
accurate simulation of compact and massive objects.

The execution of the simulations allowed, therefore, the development ofitatlamd intu-
itive notions about the general behavior of stars, understanding thetampe of the introduction
of relativistic corrections and the results arising therefrom, which arenéaé for determining
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subluminal and stable solutions.
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