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The equation of state inside very compact objects like neutron stars is still largely unkown. Even
though a lot progress has been made in recent years to developthe so-called realistic equations of
state, a lot of insight can be gained by using polytropic equations of state to integrate the stellar
equations of structure. In this work we provide a brief review of the Newtonian and relativistic
equations of structure and present some numerical results,which we believe that can be useful
for students starting to work on this field. The internal structure of the Newtonian polytropes
is obtained by the numerical integration of the Lane-Emden equation, and we used our results
which can also be used to study the Chandrasekhar limit for white dwarfs. However, Newtonian
physics cannot correctly describe very compact and massiveobjects. There is an upper mass limit
for neutron stars, supported by observations, which is not predicted by the Newtonian equations.
Neutron stars are best described under the framework of General Relativity. The introduction of
the TOV equations (as well as the relativistic Lane-Emden equations) is, therefore, necessary to
correctly identify stable and non-stable models via the mass-radius relation. The analysis of the
EoS also becomes relevant to discard models that allow a possible violation of causality (sound
speed larger thanc).
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1. Introduction

The current period of discoveries in the fields of Physics allows the acquisition of knowl-
edge and understanding of physical phenomena previously unknown.Cosmology, for instance, is
no different. The accelerated expansion of the universe, the recurrent related terms energy and
dark matter, the possible emission of gravitational waves in binary systems among others are the
new phenomenology present nowadays. Amongst this phenomenologicaldiversity, one can also
highlight an object of fundamental importance to the physical verification ofgravitational waves
emission: neutron stars. Thus, the study of these compact objects is important for the substantiation
of predictions made based on the theory of General Relativity [1].

Accurate models of neutron stars are still under development. The equationof state of matter
in the extreme conditions found in the center of those objects remains unknown.There is a variety
of factors that can be taken into account. The existence of a solid crust, magnetic fields, rotation
and superfluidity are just a few of them[1]. The study of neutron stars is therefore highly interdis-
ciplinary, covering many areas of Physics. Nevertheless, it is necessary to check whether models
derived from different assumptions and simplifications are physically consistent and correct. Due
to its high compactness it is natural that neutron stars are studied under the framework of General
Relativity.

In this work we have studied the non-relativistic (Newtonian) and relativisticstellar equations
of structure with a polytropic equation of state, and numerical results were obtained with a MAT-
LAB code. Although these results are not new in the literature, we believe that the compilation of
the relevant equations and some numerical results will be useful for students starting on this field.

The paper is organized as follows. Section 2 briefly review the relevant equations for stellar
structure used in this paper. In Section 3 we present the numerical resultsobtained for relativistic
and non-relativistic polytropes and finally in Section 4 we present our final remarks.

2. Stellar equations of structure

2.1 Non-relativistic stars

A non-relativistic star in equilibrium can be described by the equations

dP
dr

= −
GM(r)ρ(r)

r2 , (2.1)

M(r) =
∫ r

0
4πρr2dr , (2.2)

wherer is the radial coordinate inside the star,P is the density,ρ is the total mass density andM(r)
is the total mass inside a radiusr. An equation of stateP(ρ) also needs to be supplied, and we use
a polytropic equation of state of the form

P= Kργ , γ = 1+
1
n

(2.3)

wheren the polytropic index andK may be established by specifying the density and pressure at
the center.
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Introducing the new variablesx andy defined by the system

r =
x
A
, (2.4)

ρ = ρcy
n(x) , (2.5)

where

A=





4πGρ
n−1

n
c

(n+1)K





1/2

, (2.6)

one can use eqs. (2.1), (2.2) and (2.3) to obtain the Lane-Emden equation:

1
x2

d
dx

(

x2dy
dx

)

+yn = 0. (2.7)

The Lane-Emden functions are the solutions of eq. (2.7) with initial conditionsy(0) = 1 and
dy
dx(0) = 0. On the surface of the starx(R) = ARandy(R) = 0.

After solving the Lane-Emden equation (2.7) for a given value of the polytropic indexn, we
can fix the radiusR and the total massM(R) of the star. The parameterA is fixed by the relation
x(R) = AR, the central density is given by

ρc =−
M(R)A3

4πx2(R)y′(R)
, (2.8)

and the constantK can be obtained from eq. (2.6). Finally,ρ(r) and p(r) are given by eqs.(2.5)
and (2.3).

2.2 Relativistic stars

In the relativistic treatment, eq. (2.1) is replaced by the Tolman-Oppenheimer-Volkoff (TOV)
equation given by

−
dP
dr

=
GM+4πGr3P/c2

r2(1−2GM/c2r)

(

ρ +
P
c2

)

. (2.9)

The relativistic Lane-Emden equation can be obtained by introducing the newdimensionless
coordinates (similarly to what was done in the non-relativistic case):

ξ = Ar , (2.10)

v(ξ ) =
A3

4πρc
m(r) , (2.11)

θ n(ξ ) =
ρ
ρc

. (2.12)

With the definitions (2.10), (2.11) and (2.12) and the equation of state (2.3),eqs. (2.2) and
(2.9) can be rewritten as

dν
dξ

= ξ 2θ n , (2.13)

−ξ 2dθ
dξ

=
(ν +σθξdν/dξ )(1+σθ)

1−2σ(n+1)ν/ξ
, (2.14)
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n x(R) y′(R)

0 2.4502 -0.8167
1 3.1400 -0.1061
2 4.3526 -0.1273
3 6.8966 -0.0424
4 14.9716 -0.008

Table 1: Values obtained forx(R) andy′(R) from the integration of the Lane-Emden equation.

where

σ =
Pc

ρcc2 =
Kρ1/n

c2 , (2.15)

andPc is the central pressure. In the non-relativistic limitσ → 0, eqs. (2.13) and (2.14) can be
recombined to give the Lane-Emden equation (2.7) withx= ξ andy= θ .

The relativistic Lane-Emden functions are the solutions of eqs. (2.13) and(2.14) with the
initial conditionsθ(0) = 1 andv(0) = 0. The surface of the star is represented by the first zeroξ1

of θ .
Having solved eqs. (2.13) and (2.14) for given values ofn andσ , one can choose a value ofρc

to fix the other parameters of the solution and the equation of state.

3. Numerical results

We developed a MATLAB code to solve the Lane-Emden equation (2.7) and obtain the stellar
structure inside the polytrope [3]. Some relevant quantities obtained for theLane-Emden functions
with different values ofn are listed on table 1.

On figure 1, we present some typical results obtained for an= 3 polytrope (usually refered to
as the standard model), representing a star of 1M⊙ and 1R⊙, with ρc = 76,46g/cm3 andK = 3.84×
1014dyncm2/g4/3. We point out that a white dwarf can also be modelled as an= 3 polytrope. In
a white dwarf, the electron degeneracy pressure provides the means for stabilizing the star against
its gravitational radiation, and the equation of state of a relativistic degenerate electron gas is of the
from p= Kρ4/3. Note that from eqs. (2.8) and (2.6) it can be shown that forn= 3 the total mass
M(R) is independent from the central densityρc, which corresponds to the Chandrasekhar limit
for white dwarfs [5]. These stars have a mass less than the Chandrasekhar limit of approximately
1.4M⊙ and radius of the order of 104 km [4].

After a low or medium mass star has finished burning most of its hydrogen andhelium, it
can become a white dwarf. At this stage, if the star has a mass below that of theChandrasekhar
limit, the collapse is limited by the degeneracy pressure of electrons (the Pauli exclusion principle),
resulting in a stable white dwarf. However, if the star does not have any more fuel to maintain its
production of energy and has a mass greater than the Chandrasekhar limit,the pressure exerted by
the electrons is not sufficient to withstand the force of gravity and the star collapses. Its density
will increase dramatically, leading to the formation of a neutron star or black hole 1 [6, 7]. The

1It is also possible the formation of a quark star. However, this is a theoretical solution and will not be addressed in
this project.
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Chandrasekhar limit is a result from the effects predicted by Quantum Mechanics considering the
behavior of electrons that cause the degeneracy pressure of a white dwarf. Electrons, as fermions,
cannot occupy the same energy level, i.e., cannot be described by the same quantum numbers.
Thus, in white dwarfs, a large amount of electrons are at higher energies, causing a certain amount
of pressure capable of sustaining the star. For a mass greater than the limit, the degenerescence
pressure becomes insufficient to prevent the imminent contraction of the star. So far, no white
dwarf with mass greater than the Chandrasekhar limit has been observed [8].
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Figure 1: Numerical results obtained fory(x) (solid line) anddy/dx (dotted line) withn = 3, and radial
behavior of the densityρ , pressurep and massM of a star with 1M⊙ and 1R⊙.

In the relativistic treatment, we have extended our calculations, including all theresults pre-
viously done, to stiffer (incompressible matter,n → 0) EoS. The results obtained are presented
in tables 2-4. For any solution with given values ofn, σ and and a chosen value ofρc, we can
determineK from eq. (2.15), and we can obtainRandM(R) with

R = A−1ξ1 , (3.1)

M̃ ≡ σ
3−n

2 ν(ξ1) , (3.2)

M =
4πρc

A3 ν(ξ1) =

[

(n+1)c2

4πG

(

K
c2

)n]1/2

M̃ . (3.3)

From these results it is possible to verify which solutions are stable and causal. The velocity
of low frequency sound waves is given byv2

s =
dP
dρ = γP

ρ = c2γ(P/ρc2). At the stellar center where
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σ ξ1 ν(ξ1) M̃ σ ξ1 ν(ξ1) M̃

0.0 6.8966 2.0182 2.0182 0.0 4.3531 2.411 0.0
0.1 6.8264 1.0785 1.0785 0.1 3.6989 1.2987 0.4107
0.2 7.9494 0.713 0.713 0.2 3.3983 0.8403 0.3758
0.3 10.8346 0.5386 0.5386 0.3 3.271 0.6055 0.3316
0.4 17.8244 0.4516 0.4516 0.4 3.2473 0.468 0.296
0.5 37.2163 0.4214 0.4214 0.5 3.2967 0.38 0.2687
0.6 91.0674 0.4493 0.4493 0.6 3.3986 0.3201 0.2479
0.7 162.6175 0.5266 0.5266 0.7 3.5469 0.2773 0.232
0.8 187.233 0.5969 0.5969 0.8 3.7334 0.2457 0.2197
0.9 187.029 0.6375 0.6375 0.9 3.9539 0.2216 0.2102
1.0 183.6571 0.657 0.657 1.0 4.2027 0.203 0.203

Table 2: Lane-Emden relativistic functions parameters forn= 3.0 (left) andn= 2 (right).

P/ρc2 achieves its maximum valueσ , v2
s = c2γσ . If σ > 1/γ, the speed of sound would exceed

that of light and the fluid inside the star could violate causality.
Both M̃ andM increase withσ until a valueσCR, as can be seen in figure 2 forn= 1. Since

dm/dρc > 0 is a necessary condition for stability,σCR marks the onset of the first mode of radial
instability [9].
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Figure 2: M̃ as a function ofσ for n = 1. We can see thatσCR ≈ 0.42 separates stable (σ < σCR) and
unstable models (σ > σCR)

.

4. Final remarks

The present work enabled the acquisition of fundamental knowledge to develop models of
Newtonian and Relativistic stars. Through the implementation of numerical methods along with
literature review, it was possible to obtain results that simulate the intra-stellar medium and to
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σ ξ1 ν(ξ1) M̃ σ ξ1 ν(ξ1) M̃

0.0 3.1416 3.1416 0.0 0.0 2.7523 3.786 0.0
0.1 2.5989 1.7514 0.1751 0.1 2.2898 2.1735 0.1222
0.2 2.277 1.1426 0.2285 0.2 2.0008 1.4358 0.192
0.3 2.0642 0.8192 0.2457 0.3 1.8013 1.035 0.2298
0.4 1.9133 0.6249 0.25 0.4 1.6544 0.791 0.2516
0.5 1.8008 0.4981 0.2491 0.5 1.5409 0.6295 0.2647
0.6 1.7143 0.4101 0.246 0.6 1.4503 0.5164 0.2727
0.7 1.6458 0.3461 0.2423 0.7 1.3759 0.434 0.2779
0.8 1.5903 0.2979 0.2383 0.8 1.3136 0.3717 0.2812
0.9 1.5447 0.2605 0.2344 0.9 1.2604 0.3231 0.2833
1.0 1.5066 0.2307 0.2307 — — — —

Table 3: Lane-Emden relativistic functions parameters forn= 1.0 (left) andn= 0.5 (right).

σ ξ1 ν(ξ1) M̃ σ ξ1 ν(ξ1) M̃

0.0 2.504 4.6089 0.0 0.0 2.4508 4.9071 0.0
0.1 2.1037 2.7308 0.09689 0.1 2.0642 2.9318 0.0927
0.2 1.8438 1.8377 0.1781 0.2 1.8113 1.9807 0.1772
0.3 1.6593 1.3367 0.2333 0.3 1.6306 1.4452 0.2375
0.4 1.5202 1.0254 0.2716 0.4 1.4938 1.111 0.2811
0.5 1.4108 0.8172 0.2991 0.5 1.3856 0.8867 0.3135
0.6 1.322 0.671 0.3199 0.6 1.2976 0.7283 0.3385
0.7 1.2482 0.5634 0.3359 0.7 1.2241 0.6114 0.3581
0.8 1.1856 0.4816 0.3485 0.8 1.1616 0.5225 0.3739
0.9 1.1317 0.4176 0.3585 0.9 1.1078 0.4532 0.3869
— — — — 1.0 1.0606 0.3977 0.3977

Table 4: Lane-Emden relativistic functions parameters forn= 0.1 (left) andn= 0.0 (right).

verify the main physical properties of polytropic stars. As for the simulations, the results obtained
show a very good agreement when compared to previous results found inliterature. The classic
study of the polytrope of indexn = 3 allowed us to determine important physical characteristics
such as the maximum mass limit and relate it to a phenomenon well known to the white-dwarfs,
the Chandrasekhar limit. From this, it was possible to understand the concept of degenerate matter
and its relation to gravitational collapse.

However, the verification that Newtonian equations do not correctly explain the behavior of
stellar masses for different radii has become essential. Newtonian equations describe the behavior
of masses through an indefinite growth whereas General Relativity provides a maximum value of
mass for each equation of state. It is, therefore, necessary to use relativistic corrections for an
accurate simulation of compact and massive objects.

The execution of the simulations allowed, therefore, the development of technical and intu-
itive notions about the general behavior of stars, understanding the importance of the introduction
of relativistic corrections and the results arising therefrom, which are essential for determining
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subluminal and stable solutions.
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