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η −η ′−glue Mixing Vincent Mathieu

1. Introduction

Guided by symmetry, the chiral Lagrangian is one of the most powerful tools to study the interac-
tion of Goldstone bosons. The η ′ is not a Goldstone bosons because of the U(1) axial anomaly but
its inclusion in the chiral Lagrangian can be done using large N arguments.

In this work, we rewrite the mass matrix in terms of physical quantities related to low energy
constants which help us identify the relevant flavor basis well suited to deal with the mixing prob-
lem. In this basis, every unknown can be expressed (approximately) in term of four masses Mπ ,
MK , Mη , Mη ′ , which become our only inputs.

The relevance of flavor was identified in the celebrated Feldmann-Kroll-Stech (FKS) formal-
ism [1]. To derive their mass matrix, the authors of ref. [1] assumed that the decay constants follow
the particle state mixing pattern. Under this assumption, they extracted a theoretical determination
of the mixing angle.

Without the need for a decay constants pattern, we derive from the chiral Lagrangian a mass
matrix in the flavor basis which compares well with FKS and shows how the assumption of ref. [1]
influences the mass matrix.

2. The chiral Lagrangian at O(p2)

Let us briefly review what is known from chiral Lagrangians at leading order. In the large
N limit, the relevant degrees of freedom are the nine Goldstone bosons of the symmetry breaking
U(3)L ⊗U(3)R → U(3)V . We collect the Goldstone mesons in a nonlinear parametrization U =

exp
(

i
√

2π/ f
)

with π = πaλa, with λ0 ≡ 1113
√

2/3.

The chiral Lagrangian is constructed via an expansion in the momenta. At each order in p2 we
only retain retain the dominant term in the 1/N expansion [2]. Collecting all terms at O(p2) and
expanding the Lagrangian in the fields, one obtains

L (p2) =
1
2

∂µπa∂ µπbδab −
1
2

Bπaπb⟨λaλbM ⟩− 1
2

α0η2
0 .

The incorporation of the isosinglet η0 induces a mixing with the η8. The masses of the two
physical states η and η ′ are the eigenvalues of the mass matrix for the η8 −η0 system

M 2
80 =

1
3

(
4m2

K −m2
π −2

√
2(m2

K −m2
π)

−2
√

2(m2
K −m2

π) 2m2
K +m2

π +3α0

)
.

At this stage, α0 is an unknown parameter.
Furthermore, as we shall see, the diagonal mass matrix induces a privileged basis. For this it is

useful to work in the flavor basis. For this purpose, we use the representation π =
√

2 diag
(
uū,dd̄,ss̄

)
.

We next introduce the fields ηs = ss̄ and ηq = (uū+dd̄)/
√

2 (and the orthogonal counterpart
of ηq, (uū−dd̄)/

√
2 which decouples under isospin symmetry) allowing to rewrite the mass matrix

as

M 2
qs =

(
m2

π +2(α0/N) (α0/N)
√

2
(α0/N)

√
2 2m2

K −m2
π +(α0/N)

)
.

However, with only one parameter α0 is not possible to reproduce the two physical masses [2].
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3. The chiral Lagrangian at O(p4)

For our purposes, we are only interested in terms contributing to the kinetic part, the mass ma-
trix and the decay constants. We restrict ourselves to terms involving only zero or two derivatives,
and we only keep the leading order in 1/N. There are three terms of interest at O(p4) and they
involve a single trace over flavor [2]:

f 2

8

[
− B

Λ2

⟨
M ∂µ∂ µU†⟩+ B2

2Λ2
1

⟨
MU†MU†⟩+ B

2Λ2
2

⟨
MU†∂µU∂ µU†⟩]+h.c.. (3.1)

The three low energy constants enter the observables without a clear physical meaning. Λ and Λ2

induce a splitting between the π and K decay constants. Λ1 and Λ2 enter in the corrections to the
mass matrix. Fitting their values on observables leads to a consistent η −η ′ scheme at O(p4) [2].

We are interested in a more physical interpretation of the low energy constants and we aim
at an analytical resolution of the mass matrix. We therefore would like to reduce the number of
parameters since a two-by-two matrix gives us only two independent equations. To this end, we
perform the rotation

U −→U ′ =U − B
2Λ2 (M −UM †U). (3.2)

Now, the low-energy constants appear in a more convenient way [3]. The wave-function renormal-
izations are simply proportional to the matrix of the decay constants. This matrix is proportional to
⟨λaλbM ⟩. Renormalizing the fields is easy in the case of a diagonal matrix since it only amounts to
renomalizing the fields by a simple rescaling without any rotation. This is not the case in the U(3)
basis where the rotation is mandatory to brings us in the flavor basis where ⟨λaλbM ⟩ becomes
diagonal. It is then more advantageous to start directly in the flavor basis. In the flavor basis the
kinetic terms

1
2

(
fq

f

)2

∂µηq∂ µηq +
1
2

(
fs

f

)2

∂µηs∂ µηs, (3.3)

does not present any mixing term. Moreover, since the kinetic energy and the decay constants
follow the same pattern, the matrix of the decay constants is also diagonal. This avoids unwanted
transition elements J8

µ |η0⟩. The particular structure of the mass matrix imposes then a privileged
basis as claimed below and used in the FKS scheme [1].

The flavor decay constants can be easily expressed in term of the physical ones (in the U(3)
basis): f 2

q = f 2
π , and f 2

s = 2 f 2
K − f 2

π .
The mass matrix then involves those physical decay constants. Introducing the parameter

y = fq/ fs, we can derive the mass matrix in a more convenient form

M 2
qs =

(
M2

qq +2α αy
√

2
αy

√
2 M2

ss +αy2

)
+O

( α
Λ2

)
. (3.4)

Assuming a negligible term O
(
α/Λ2

)
provides us analytical formulas, while the inclusion of

this term leads to a unavoidable numerical procedure.
From (3.4) and neglecting the term O

(
α/Λ2

)
(or equivalently taking the limit Λ → ∞), it is

straightforward to extract the value of the parameters y and α in function of the masses. Equat-
ing the determinant and the trace of (3.4) with the mass matrix matrix of the physical states,
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diag(M2
η ,M

2
η ′), we obtain

y2 = 2
M2

ηM2
η ′ −M2

ss(M
2
η +M2

η ′ −M2
ss)

M2
π(M2

η +M2
η ′ −M2

π)−M2
ηM2

η ′
, (3.5)

α =
M2

η +M2
η ′ −M2

π −M2
ss

2+ y2 , sin2φ =
2
√

2αy
M2

η ′ −M2
η
. (3.6)

We quoted the expression for the mixing angle in the flavor basis defined in a standard way by(
η
η ′

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
ηq

ηs

)
. (3.7)

In the mass matrix (3.4), Mqq and Mss are the unknown masses of the pseudoscalar qq̄ and ss̄
states. They can be related to physical masses by expressing them in the U(3) basis. We obtain [2]

M2
qq = M2

π , M2
ss = 2M2

K −M2
π +(M2

K −M2
π)

2
(

2
Λ2

1
− 1

Λ2
2

)
. (3.8)

We are not able to relate M2
ss with the physical masses at O(p4). We can approximate M2

ss by
2M2

K −M2
π (exact only at O(p2)), the error on Mss being less than 5%. This approximation coincides

with the value used in the FKS paper [1].
We then obtain the value for the two parameters y and α and a prediction for the physical

quantities
fK

fπ
= 1.146, ϕ = 41.40◦. (3.9)

Our calculated values (3.9) lie in the usual range [40◦,45◦] and are in agreement with the data on
η and η ′ decays. The phenomenological value for the ratio fK/ fπ = 1.193(0.009) [4] is also close
to our predicted value.

The approximation M2
ss = 2M2

K −M2
π is only valid at leading order and receives a correction at

order O(p4) [2]. The extra contribution reduces the value of the mixing angle and fK/ fπ as shown
in ref. [3].

4. Comparison with FKS Formalism

We next compare the prediction of the chiral Lagrangian with the FKS results [1]. The basic
hypothesis of the FKS formalism was the assumption that decay constants in the flavor basis follow
the same mixing pattern (3.7) of the states(

f q
η f s

η
f q
η ′ f s

η ′

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
fq 0
0 fs

)
. (4.1)

Under this assumption, the mass matrix is derived from current algebra and reads(
M2

qq +
√

2
fq
⟨0| αs

4π GG̃|ηq⟩ 1
fs
⟨0| αs

4π GG̃|ηq⟩√
2

fq
⟨0| αs

4π GG̃|ηs⟩ M2
ss +

1
fs
⟨0| αs

4π GG̃|ηs⟩.

)
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Let us see how it arises from the chiral Lagrangian.
In our effective approach, the anomaly couples equally to each flavor before the renormaliza-

tion of the fields. Indeed we have
(
∂ µA0

µ
)

anomaly
= f α0(

√
2ηq +ηs), which should be compare to(

∂ µA0
µ
)

anomaly
= 3αs/(4π)Ga

µνG̃µν
a . Rewriting M 2

FKS in our notation, we get (in their paper [1],

the authors denoted the anomaly by a2 = α)

M 2
FKS =

(
M2

qq +2α αy
√

2
αy

√
2 M2

ss +αy2

)
(4.2)

We clearly see the equivalence of the mass matrices (4.2) and (3.4) at O(α/Λ2). The mass matrix
is then symmetric and we do not need to impose the equality of the off diagonal terms by hand as
in ref. [1].

The important point is that we did not use any assumptions of the mixing scheme for the
decay constants in the derivation of (3.4). The hypothesis (4.1) is not mandatory from our effective
field theory point of view and is not physically justified on general grounds. By comparing both
approaches, we notice that the hypothesis on the decay constants pattern is not consistent with the
chiral Lagrangian at next to leading order in the large N limit since it amounts to send Λ → ∞.

5. Inclusion of the Glueball

The inclusion of the glueball follow the same lines as the explicit breaking of chiral symmetry.
The mass term breaks the chiral symmetry in the QCD Lagrangian. However, if we allow the mass
term M to transform like U†, the mass term in the effective Lagrangian will mimic the breaking in
the original Lagrangian.

The U(1)A transformation induces an extra term θFµν F̃µν in the QCD Lagrangian. Accord-
ingly, we allow θ to transform such that the combinaison η0 +θ remains invariant. θ couples to
Fµν F̃µν and represents then a pseudoscalar purely gluonic field. We add a mass and a kinetic terms
for the gluonic field and we obtain the action [5]

L (p2) =
f 2

8
⟨
∂µU†∂ µU +B(mU† +Um†)

⟩
− α

2
(η0 +θ)2 − 1

2
m2

θ θ 2 +
1
2

∂µθ∂ µθ (5.1)

The mass matrix involves three unknowns and can be solve analytically. But by imposing the
physical masses for the η and η ′ we cannot accommodate the decays [5]. However, if we allow the
masses to differ slightly we find the optimal mixing scheme to be [6] 0.9709 0.2231 −0.0872

−0.2292 0.7590 −0.6094
−0.0698 0.6116 0.7881

 , (5.2)

with the corresponding to the values θ =−13.3◦,φG = 4◦,φ = 37.8◦ and Mη = 523 MeV, Mη ′ =

1020, MeV MG = 1491 MeV. The third partner with a mass around 1500 MeV could be associated
to the η(1405). However, a further analysis needs to be perform to confirm this hypothesis [6].
We note also that, introducing the gluonic state, allows to reconciliate all decays around a common
value for the mixing angle θ ∼ −15◦ where the typical value obtain from processes involving the
anomaly is different (θ ∼=−22◦ [2]).
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6. Conclusion

Keeping only the leading term in 1/N at each order in the momentum expansion, we derived
at O(p4) a mass matrix in the flavor basis. The quantities are expressed in term of the masses and
the ratio of decay constants y, instead of the low energy constants, allowing a clear understanding.
Such a form allows the extraction of two parameters ϕ and y from mass inputs. Their values are in
agreement with the data.

The choice of the flavor basis is motivated the simple expression of the kinetic term and the
diagonal matrix for the decay constants. Such features, not apparent in the U(3) basis, make the
calculation tedious in that basis and render the physics more obscure.

The properties of the flavor basis were identified and analyzed in the FKS scheme [1]. In
this work, we relate this formalism with the chiral Lagrangian approach where no assumption on
the mixing scheme for the decay constants is required. It is shown that the FKS ansatz is not
compatible with the chiral Lagrangian. The difference stands in the parameter Λ. Taking the limit
Λ→∞ renders the FKS scheme whereas its value, extracted from the data, is of the same magnitude
as those of the other low-energy constants [2].

The predicted values (3.9) are in agreement with the data but leave a room for improvement
since assumptions were invoked. Moreover, the glue content in the η ′ wave function should be
properly considered at O(p4). To this aim, the inclusion of the pseudoscalar glueball in the chiral
Lagrangian in under construction [5]. At leading order, the inclusion of the glueball leads to a
consistent mixing scheme for all decays [6].
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