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1. Introduction

Exactly solvable models are simple two-dimensional restic field theories in which opera-
tor solutions of the field equations can be found. They ineletsions of the model with derivative
coupling [1, 2, 3], the massless Thirring model [4] and thesshge Federbush model [5].

The exactly solvable models provide us with a suitable gidion analyzing the nonpertur-
bative structure of the SL and LF versions of QFT as well asafoleeper understanding of the
relationship between the two forms [6] of relativistic QE®oking at the main features of the two
schemes, one notices striking mathematical as well as galydifferences between them. Dif-
ferent physical structures include nature of field varialfynamical versus dependent), different
number of kinematical and dynamical Poincaré generattaitjssof the vacuum state, desription
of "spinor" field in in two space-time dimensions. It is clélaat physical predictions (amplitudes,
correlation functions, etc.) should agree in both fornma$isf these are applied in a mathemati-
cally correct manner. It is also important to develop thatligont picture without merely rewriting
mechanisms known in the conventional field theory to LF Vdes.

In the case of the exactly soluble models, SL and LF cormeidtiinctions can be calculated
nonperturbatively and compared. In this way, the role ofviliuum state and of the operator part
can be explicitly "visible", allowing one to understand {loés)advantages of the two formalisms.
For example, a potential weak point in the SL models is treatnof their vacuum states since
one does not know the true lowest-energy eigenstate of thelémiltonian, just of its free part.
We shall therefore critically examine the SL versions offthe exactly solvable models. In doing
that, we shall express the SL Hamiltonians in terms of colitgdmson operators, obtained by
bosonization of the fermion currents. In this way, interagtterms become bilinear and can be
diagonalized by a Bogoliubov transformation: the true Istaenergy eigenstate will appear as a
transformed Fock vacuum. The correlators should be caéulilas its expectation values.

Another new element of our approach is a modification of tm®nical procedure. The knowl-
edge of the operator solutions (which tells us how the itérg field is composed from free fields)
has to be taken into account in order to work with true fieldrdeg of freedom. In an analogy to an
elimination of nondynamical fields by using their consttgjrthis solution has to be inserted back
to the original Lagrangian. This simple observation leadsemarkable changes in the form of
the Lagrangian and Hamiltonian. This procedure is not theesas inserting Dirac equation to the
Lagrangian (which would be an illegal step): the Dirac emumetells us what/*d,,¥ is while the
operator solution implies knowledge directly@f¥. We shall find that the true Hamiltonian of the
derivative-coupling model does not contain interactitwe, interacting Hamiltonian of the Thirring
model has opposite sign as expected naively and the SL andafiltanians of the Federbush
model have analogous structure. In the usual treatmeritt stinecture differs completely.

2. SL and LF derivative-coupling model

This is the simplest relativistic model [7] and turns out &duite useful for illustration of the
derivation of the correct Hamiltonians and vacuum statekérboth quantization schemes as well
as for comparison between them. The Lagrangian densityeadehivative-coupling model is

= '§¢yﬂ 5[1 W_mPy + %au(paucp— %uz(pz—gdu(pJ“, JH =Py, (2.1)
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Both scalar and fermion field are massive. ot 0 the theory is known as the Schroer's model
[1], for interaction with the axial vector as the Rothe-Sté@scu modelnd = 0, 1 # 0) [2].
The Euler-Lagrange equations following from the above hagran are

iyH9,W = mW +gd, ey W, 9,0" @+ pPe=gd,IH =0. (2.2)

We will use capital Greek letters for interacting Heisegbfelds and small letters for the free
fields. The free scalar fielg(x) which enters into the operator solution

W(x) =: €97 1 (x), ivHIup(x) = mip(x) 2.3)
is quantized as (our notationksx = E k1)t — kX2, E (kL) = /K2 + p2)

dkt

o) = \/_n/ V/2E(KD)

a(kh)e ** 1 af (k!)ekx]. (2.4)

We will also need the free massive fermion field

phb(ph)e P+ v(ph)d'(p)eP,

(x)
w \/ n/ \/2E pl
=(Vp" VP ), V(P = (/P —Vp), P =E(ph)+p" (2.5)
The conjugate momenta are calculated directlygs= do(x) — g°, My = (i/2)W'(x),
Myt = I'IL(X). They lead to the HamiltoniaH = Hgg + H'. Hog is the free scalar-field part and

H = /dxl[—iLIJTaldllierlPT)/’lPJrgdl(le]. (2.6)

Conventionally, one inserts the free field into the first étic) term ofH. This procedure yields
+00
Hor = [ X[ —iyTalary +myTyPy). After inserting the current in the bosonized form,

jH(x) = —ﬁ \(/j;T K {c(khye kX — cf itk 2.7)
the interaction term in Eq.(2.6) becomes
+o
Hing = z\iﬁ_/ dkt[cf (kYa(kt) +al (Khe(kh) +al (ke (kY + a(kl)e(kh)].  (2.8)

The composite boson operators, satisfyiog),c'(1)] = d(k—1), are given as

%@ [ dp{B(pH) [B'(pH)b(p* +K!) — " (pH)d (P + k)] +
+e(ph)8(p'(pt—k))d(k! — ph)b(ph)}. (2.9)
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The Hamiltonian is non-diagonal. It can be diagonalized tBogoliubov transformation which
for m= 0 is implemented by means of a unitary operatos exp(iS) with *

_ / dky(k) [cf (KY)al (—kb) — c(kbya(—kb)]. (2.10)
The physical vacuum is then found in a complete disagreemginthe LF results as
+00
Q) = Nexp|[y() / dklc’ (—Kbyal (k1)) [0). (2.11)

We shall sketch the LF analysis using the following notatioH = (x,x7), px= %p*x* +
spxt, pp=m?=p =m?/pt,0. =3d/oxt, 0_ =9d/dx ", Y (X) = (¢, ¢"). The La-
grangian of the model expressed in terms of LF space-timdialddvariables has the form

iy =19, 0, wz+iwﬂ 0 W1 — MWW, + W,y 4
+20,90_¢— 5 u @ —99, 9j" —gd_gj . (2.12)

The corresponding field equations read, 2V, = mW; + 299, @W¥,, 2id_¥Y1 = mW, 4 2gd_@pY¥;.
Inserting the second (constraint) equation into the Lagjeanleads to the free LF Hamiltonian:

P = /dx [ (4! W2+LII2T411)+[12(/)2}. (2.13)

—00

The SL and LF forms lead seemingly to a completely differgmtaginics! The resolution of this
contradiction is simple. The above considerations are gurdrhe solution of the field equations
have not been taken into account. Analogously to a treatofemtonstraint, we have to insert the
solution to the Lagrangian first, then calculate conjugabenenta and derive the Hamiltonian.
Inserting the solution of the Dirac eq. of the DCM in the fody¥(x) = —igd, @(x)W(X) +
e 199 g LP(X) into .2 has a consequence that the interaction part cancels! Thesponding
free field conjugate moment&l(, = i, My = dog) imply the Hamiltonian

+00
' . 1 1 1
H= [od[-iyTato+mp"yPy+ SM2+ ~(019)7 + 267, (2.14)
which is just the sum of free Hamiltonians of the massiveasaahd fermion fields. Correct Heisen-
berg equations are generated with this Hamiltonian:
idW(x) = —[H,W(X)] = —iatoW+gj°W—gjlalw. (2.15)

Physical vacuum of the DCM coincides with the Fock vacuume dhly trace of the interacting
theory is the non-canonical form of the anticommutatiomtieh of the interacting fermion field

1our approach here is a bit heuristic, operators have to hdarzed. Mathematically correct treatment can be
given by field operators considered as operator-valuedluisons [8].
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and the coupling-dependent correlation functions Theratre expressed in terms of the free-field
correlators () (x—y) = (0|¢p(x) S(+ = (0|¢a ()P (y)|0), @S

(vagqWq (X)W (y)[vag = (0] : €999 gy (x )wﬁm:égw(”:|0>=e92D<”<X*y>s§;><x—y>. (2.16)

We note that the DC model was used to illustrate the conceg dinfraparticle” [1]. The results
obtained in the paper are valid for considered interactiagrangian, which however, as we have
shown here, has nothing to do with the true Lagrangian of tiggnal model.

In the LF case, the field equations are solvedWy(x) = e 199Xy (x), 2id, o = my,
W1 (x) = e 99Ny (x), 2i0_ Yy = mye. Inserting these solutions into the LF Lagrangian yields

. g . g 1
=iy oy Yo +ign" O_ Y —m(yn T+ ' yn) + 20, 0@ — Euzq)z- (2.17)

The free Hamiltonian (2.13) follows. This result is the saasene obtained with the conventional
treatment. The reason is that there is no kinetic (i.e.vdgvie) term in LF Hamiltonian.
The form of the correlation functions coincides with theepiike treatment. For example,

(0] (x)W3(y)[0) = ZD“(X*y’si”(x—y)
S0~ OO0 ()0) = [ 4 Mt ooy iy e
0
s [No(mf)+| sgn(z")Jo(my/22) } +6(— )4nKo(m ~2).(2.18)
Jo,Ng and K are the Bessel functions. The scalar-field functiomis = ‘1S§+ . The

small imaginary (damping) factors guarantee emstenchmtbrrespondmg mtegrals.

Note that the scalar-field correlation function diverges fio= 0 in both schemes. The LF
calculation with the massless fermion field is inconsis(grelds vanlshmgS(,l+ z).) Them=0
limit of the LF fermion correlation function coincides hoves with the SL case.

The Lagrangian of the massive Rothe-Stamatescu modelrigdedewith (2.1) except that the
interaction term has}é‘ instead ofj#. However, since the massi\Jé‘ current is not conserved,
the model has a more complicated structure. Here, we will ordke two remarks. First, due to
nonconservation of the axial-vector current, the (psesmar field is no longer free. The Dirac
equation seems naively to have an operator solution sirtaléihe one from the DCMW¥(x) =
e~ 19Y°9) (). However, this expression actually does not solve the @mudtie to{y*, y®} = 0.
Thus, the massive RS model is not exactly solvable. On ther didind, the Dirac equation in the
original RS model can be solved exactly but inserting thatgmi to the Lagrangian generates the
free Hamiltonian. The overall picture is thus similar to thassive derivative-coupling model.

3. The Thirring model

The operator solution of the Thirring model was given by Ké&i[9] who also calculated n-
point correlation functions. The model may seem obsoletewaninteresting today, but actually
not all of its aspects have been adequately clarified. A syatie Hamiltonian study based on the
model’s solvability was not given so far.
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The classical Lagrangian density of the Thirring model is
&= 12¢y“ d,¥— %gJuJ“, JH=PyHy, 3.1)

The field equations atig d,W(x) = gJ*(x)y, W (x) with d,J#(x) = 0. The simplest solution is
1
VT
It depends on the "integrated currgiik). Free fields define the solution of the interacting model.

Details of the canonical treatment of the model can be found0]. The main difference with
respect to our previous analysis is that we insert the opesatution to the Lagrangian first:

WY(x) = e OVIINyx), Wa,Wx) =0, ju(X)=—=0,j(x), HX) = jHX). (3.2)

- i . _dg o
zz.wyﬂ[—%auijre Fauw] - Ljui (3.3)

The first term in the bracket combines with the interactiomteeversing its sign. We get
oo
H= /dxl[— igTatory — %g(jojo— jljl)} = Ho + Hin. (3.4
The interacting Hamiltonian has the simplest form in terfsomposite operators(k?),c (k%):
oo
Hing = % / Ak [T (kRH)eT (k) + (ke k). (3.5)

Obviously|0) is not an eigenstate &f = Ho+ Hine. The true lowest-energy eigenstate-btan be
found by its diagonalization using a suitable unitary operd (y) [10, 11],U (y)HU ~%(y)|0) = 0.
It follows thatU —1(y)|0) will be the physical vacuum state. Explicitly, one fingg £ %artanhy/n)

+oo
0) =exp[ 3w [ dp* [T (p)c'(~p) ~ c(p)c(~p)] ] 0) (36)

It corresponds to a coherent state of pairs of compositerisosih zero total momentur®!|Q) =

0. The vacuunQ) also carries vanishing charge and axial charge and comespo the symmetric
phase. The correlation functions can be calculated fromdinmal-ordered operator solution (3.2)
using an infrared cutoff and the new vacuum stég Calculations of the particle spectrum are
also possible using the discrete plane-wave basis. Thépevitontrivial sincec(k?), b(pt)] # 0.

4. The Federbush model

The Federbush model (FM) is the only knowrassivesolvable model. It permits us to gener-
alize the Klaiber’s bosonization to the massive case anddrch for the true physical ground state
generalizing the SL treatment applied to the masslessifigimodel. The Lagrangian of the FM
describes two species of the fermion field interacting vec#f current— current coupling,

7= 'Ewyu oW mPY 126y“ Oy ® — PP — geyyHHY. 4.1)
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HereJH = YyHW HH = dyHd. The field equations are

iyHo,W(x) = mW(X) + gy YHHY ()W(X), iyHouP(X) = ud(x) — gev yHI¥ (X)D(x).  (4.2)
The relationsJ#(x) = *V4, j(x)//m, HH(x) = e*Vd,h(x)//T define the “integrated currents”
j(x) andh(x). They enter into the solutions in an "off-diagonal” way:
Wx) = (), ivap(x) = mpx), ox) =€), iHa,ex) = pp(x). (4.3)

The exponentials of the composite fields are more singutar th the massless case and have to

be defined using the "triple-dot ordering" [12, 13] which galizes the normal ordering defined

through order by order subtractions of VEVs. We avoid thi®bgonization of the massive current.
The usual treatment yields contradictory dynamics: the SmHtonian contains interaction,

400 . .
H= [od[-Swla o g+ mp'Py - Sola® oo+ ne'Po— g+, (4.4

while the LF Hamiltonian (obtained after inserting two féom constraints), is free:

00

P = /d% [m(wﬂwﬁwz*wl) +u(<m*<pz+cpz*cp1)]- (4.5)

—00

Our approach leads to a different result. Inserting thetgwia (4.3) into the Lagrangian, we get
i o i © _ _
L= STV O g — Y+ S0y Oy 0 — Hpp+ gEuy Y,
+o0
H= /dxl[— igTatory + mygy —iptatoip+ pee+g(j°ht — jh)]. (4.6)

Both operators are expressed in terms of free fields and mawp@osite sign (with respect to the

conventional result) in the interaction piece. The inteaacterm is non-diagonal when expressed

in terms of bosonized massive currents. A massive versidheoBogoliubov transformation is

required. The massive analogues of Klaiber's operatdts are surprisingly complicated [14].
The LF version of the Lagrangian (4.1) is:

Sy =W 0, Wy +iW] 0. Wy — m(WIW; + WIW,) +id) 9, @y +id] 0. by —

— (I + DI, — gﬁh’ + gj*hf (4.7)

The LF current components are( ): *( ) 2: l[,lz( X)Pa(X) 3, j*(x):J*(X):Z:wI(X)wl(x):,
ht(X) = HT(x) = 2: @ ()@ (x) ;, h (X) = H™(X) = 2: @ (X)@1.(x). The coupled field equations

210, Wy (x) = mW; —gh W,, 2id Wy =mW,+gh" Wy,
210, ®y(x) = uPy +gj By, 200Dy = udy —gj @y (4.8)

are solved in terms of the corresponding free fields (4.3)taad.F integrated currents,

oo +o0
j(x) = \/TTT/dz‘e(x‘ —-Z)jt(x",27), h(x)= ?/dz‘s(x‘ —-Z)ht(x",2).  (4.9)
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The bosonized form of the LF Hamiltonian is quadratic in cosife operators and diagonal:
+00
P, = S%/dklw [AT(k+)D(k+) +D'(kH)AK') — BT (kH)C(k") —CT(k")B(k™)|.  (4.10)

The operatoré\(k*), B(k™), C(k") andD(k") correspond tg™, h*, j~ andh™. Their form is as
simple as the masslesgk!) in the SL case. For example,

i mPktxt

Al ) = [t {[01(p7 )b+ p7) = (p7)a(p" K)o+ +
0

+d(p")b(k" — p*e e

R } (4.11)

Complexities will enter in calculations of the correlatibmctions since the composite LF boson
operators do not commute to the delta function at unequalirbEst [14]. The SL Hamiltonian
is not diagonal. It will be very interesting to see how the $id & F schemes generate mutually
consistent results for the correlators given the compleddferent vacuum structure in the two
formulations of the relativistic dynamics of the Federbuostdel.

5. Acknowledgements

This work was supported by the VEGA grant No. 2/0070/2009&aniN2P3 funding at the
LPTA Laboratory, Montpellier University.

References

[1] B. Schroer, Fort. Physik 1, 1 (1962).
[2] K. D. Rothe and O. I. Stamatescu, Ann. Phys. 95, 202 (1975)
[3] L. V. Belvedere and A. F. Rodrigues, J. Phys. A 40, 519320
[4] W. E. Thirring, Ann. Phys. 3, 91 (1958).
[5] K. Federbush, Phys. Rev. 121, 1247 (1961).
[6] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[7] F. Strocchi,Selected topics on the general properties of QWorld Sci. Lect. Notes Phys. 51, 1993.
[8] P. Grangé and E. Werner, Nucl. Phys. Proc. Suppl. 1612368).
[9] B. Klaiber, The Thirring modelin Lectures in Theoretical Physics, Vol. Xa, New York, 1968141.
[10] L. Martinovic, Nucl. Phys. Proc. Suppl. 199, 147 (2010).
[11] L. Martinovic and P. Grangé, submitted for publication.
[12] A. Wightman, in Cargése Lectures in Theoretical Physl®64, p.171.
[13] B. Schroer, T. T. Truong and P. Weisz, Ann. Phys. 102, (156 6).

[14] L. Martinovic, P. Grangé and B. Mutet, in preparation.



