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Vacua and solvable models L’ubomír MARTINOVIC̆

1. Introduction

Exactly solvable models are simple two-dimensional relativistic field theories in which opera-
tor solutions of the field equations can be found. They include versions of the model with derivative
coupling [1, 2, 3], the massless Thirring model [4] and the massive Federbush model [5].

The exactly solvable models provide us with a suitable ground for analyzing the nonpertur-
bative structure of the SL and LF versions of QFT as well as fora deeper understanding of the
relationship between the two forms [6] of relativistic QFT.Looking at the main features of the two
schemes, one notices striking mathematical as well as physical differences between them. Dif-
ferent physical structures include nature of field variables (dynamical versus dependent), different
number of kinematical and dynamical Poincaré generators, status of the vacuum state, desription
of "spinor" field in in two space-time dimensions. It is clearthat physical predictions (amplitudes,
correlation functions, etc.) should agree in both formalisms if these are applied in a mathemati-
cally correct manner. It is also important to develop the light front picture without merely rewriting
mechanisms known in the conventional field theory to LF variables.

In the case of the exactly soluble models, SL and LF correlation functions can be calculated
nonperturbatively and compared. In this way, the role of thevacuum state and of the operator part
can be explicitly "visible", allowing one to understand the(dis)advantages of the two formalisms.
For example, a potential weak point in the SL models is treatment of their vacuum states since
one does not know the true lowest-energy eigenstate of the full Hamiltonian, just of its free part.
We shall therefore critically examine the SL versions of thefew exactly solvable models. In doing
that, we shall express the SL Hamiltonians in terms of composite boson operators, obtained by
bosonization of the fermion currents. In this way, interacting terms become bilinear and can be
diagonalized by a Bogoliubov transformation: the true lowest-energy eigenstate will appear as a
transformed Fock vacuum. The correlators should be calculated as its expectation values.

Another new element of our approach is a modification of the canonical procedure. The knowl-
edge of the operator solutions (which tells us how the interacting field is composed from free fields)
has to be taken into account in order to work with true field degrees of freedom. In an analogy to an
elimination of nondynamical fields by using their constraints, this solution has to be inserted back
to the original Lagrangian. This simple observation leads to remarkable changes in the form of
the Lagrangian and Hamiltonian. This procedure is not the same as inserting Dirac equation to the
Lagrangian (which would be an illegal step): the Dirac equation tells us whatγµ∂µΨ is while the
operator solution implies knowledge directly of∂µΨ. We shall find that the true Hamiltonian of the
derivative-coupling model does not contain interaction, the interacting Hamiltonian of the Thirring
model has opposite sign as expected naively and the SL and LF Hamiltonians of the Federbush
model have analogous structure. In the usual treatment, their structure differs completely.

2. SL and LF derivative-coupling model

This is the simplest relativistic model [7] and turns out to be quite useful for illustration of the
derivation of the correct Hamiltonians and vacuum states inthe both quantization schemes as well
as for comparison between them. The Lagrangian density of the derivative-coupling model is

L =
i
2

Ψγµ
↔
∂µ Ψ−mΨΨ+

1
2

∂µφ∂ µφ − 1
2

µ2φ2−g∂µφJµ , Jµ = ΨγµΨ. (2.1)
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Both scalar and fermion field are massive. Forµ = 0 the theory is known as the Schroer’s model
[1], for interaction with the axial vector as the Rothe-Stamatescu model (m= 0,µ 6= 0) [2].

The Euler-Lagrange equations following from the above Lagrangian are

iγµ∂µΨ = mΨ+g∂µφγµΨ, ∂µ∂ µφ + µ2φ = g∂µJµ = 0. (2.2)

We will use capital Greek letters for interacting Heisenberg fields and small letters for the free
fields. The free scalar fieldφ(x) which enters into the operator solution

Ψ(x) =: eigφ(x) : ψ(x), iγµ∂µψ(x) = mψ(x) (2.3)

is quantized as (our notation isk̂.x≡ E(k1)t −k1x1,E(k1) =
√

k2
1 + µ2)

φ(x) =
1√
2π

+∞
∫

−∞

dk1
√

2E(k1)

[

a(k1)e−ik̂.x +a†(k1)eik̂.x]. (2.4)

We will also need the free massive fermion field

ψ(x) =
1√
2π

+∞
∫

−∞

dp1
√

2E(p1)

[

u(p1)b(p1)e−i p̂.x +v(p1)d†(p1)ei p̂.x
]

,

u†(p1) = (
√

p+,
√

p−), v(p1)† = (
√

p+,−
√

p−), p± = E(p1)± p1. (2.5)

The conjugate momenta are calculated directly asΠφ = ∂0φ(x)− gJ0, ΠΨ = (i/2)Ψ†(x),
ΠΨ† = Π†

Ψ(x). They lead to the HamiltonianH = H0B +H
′
. H0B is the free scalar-field part and

H
′
=

+∞
∫

−∞

dx1[− iΨ†α1∂1Ψ+mΨ†γ0Ψ+g∂1φJ1]. (2.6)

Conventionally, one inserts the free field into the first (kinetic) term ofH
′
. This procedure yields

H0F =
+∞
∫

−∞
dx1

[

− iψ†α1∂1ψ +mψ†γ0ψ
]

. After inserting the current in the bosonized form,

jµ(x) = − i√
2π

∫

dk1
√

2k0
kµ{

c(k1)e−ik̂.x−c†(k1)eik̂.x}, (2.7)

the interaction term in Eq.(2.6) becomes

Hint =
g

2
√

π

+∞
∫

−∞

dk1[c†(k1)a(k1)+a†(k1)c(k1)+a†(k1)c†(k1)+a(k1)c(k1)
]

. (2.8)

The composite boson operators, satisfying[c(k),c†(l)] = δ (k− l), are given as

c(k1) =
i√
k0

∫

dp1{θ
(

p1k1)
)[

b†(p1)b(p1 +k1)−d†(p1)d(p1 +k1)
]

+

+ ε(p1)θ
(

p1(p1−k1)
)

d(k1− p1)b(p1)
}

. (2.9)

3



P
o
S
(
L
C
2
0
1
0
)
0
2
5

Vacua and solvable models L’ubomír MARTINOVIC̆

The Hamiltonian is non-diagonal. It can be diagonalized by aBogoliubov transformation which
for m= 0 is implemented by means of a unitary operatorU = exp(iS) with 1

S(γ) = −i

+∞
∫

−∞

dk1γ(k)
[

c†(k1)a†(−k1)−c(k1)a(−k1)
]

. (2.10)

The physical vacuum is then found in a complete disagreementwith the LF results as

|Ω〉 = Nexp
[

γ(g)

+∞
∫

−∞

dk1c†(−k1)a†(k1)
]

|0〉. (2.11)

We shall sketch the LF analysis using the following notation: xµ = (x+,x−), p.x = 1
2 p+x− +

1
2 p−x+, p.p = m2 ⇒ p̂− = m2/p+,∂+ = ∂/∂x+, ∂− = ∂/∂x−, ψ†(x) = (ψ1

†,ψ2
†). The La-

grangian of the model expressed in terms of LF space-time andfield variables has the form

Ll f = iΨ2
†

↔
∂+ Ψ2 + iΨ1

†
↔
∂− Ψ1−m(Ψ1

†Ψ2 + Ψ2
†Ψ1)+

+2∂+φ∂−φ − 1
2

µ2φ2−g∂+φ j+ −g∂−φ j−. (2.12)

The corresponding field equations read 2i∂+Ψ2 = mΨ1+2g∂+φΨ2, 2i∂−Ψ1 = mΨ2 +2g∂−φΨ1.
Inserting the second (constraint) equation into the Lagrangian leads to the free LF Hamiltonian:

P− =

+∞
∫

−∞

dx−

2

[

m
(

ψ1
†ψ2 + ψ2

†ψ1
)

+ µ2φ2
]

. (2.13)

The SL and LF forms lead seemingly to a completely different dynamics! The resolution of this
contradiction is simple. The above considerations are wrong. The solution of the field equations
have not been taken into account. Analogously to a treatmentof a constraint, we have to insert the
solution to the Lagrangian first, then calculate conjugate momenta and derive the Hamiltonian.

Inserting the solution of the Dirac eq. of the DCM in the form∂µΨ(x) = −ig∂µφ(x)Ψ(x)+

e−igφ(x)∂µψ(x) into L has a consequence that the interaction part cancels! The corresponding
free-field conjugate momenta (Πψ = iψ†,Πφ = ∂0φ ) imply the Hamiltonian

H =

+∞
∫

−∞

dx1[− iψ†α1∂1ψ +mψ†γ0ψ +
1
2

Π2
φ +

1
2
(∂1φ)2 +

1
2

µ2φ2], (2.14)

which is just the sum of free Hamiltonians of the massive scalar and fermion fields. Correct Heisen-
berg equations are generated with this Hamiltonian:

i∂0Ψ(x) = −[H,Ψ(x)] = −iα1∂1Ψ+g j0Ψ−g j1α1Ψ. (2.15)

Physical vacuum of the DCM coincides with the Fock vacuum. The only trace of the interacting
theory is the non-canonical form of the anticommutation relation of the interacting fermion field

1Our approach here is a bit heuristic, operators have to be regularized. Mathematically correct treatment can be
given by field operators considered as operator-valued distributions [8].
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and the coupling-dependent correlation functions. The latter are expressed in terms of the free-field
correlators,D(+)(x−y) = 〈0|φ(x)φ(y)|0〉, S(+)

αβ (x−y) = 〈0|ψα (x)ψβ (y)|0〉, as

〈vac|Ψα (x)Ψβ (y)|vac〉= 〈0| : e−igφ(x) : ψα(x)ψβ (y) : eigφ(y) : |0〉= eg2D(+)(x−y)S(+)
αβ (x−y). (2.16)

We note that the DC model was used to illustrate the concept ofan "infraparticle" [1]. The results
obtained in the paper are valid for considered interacting Lagrangian, which however, as we have
shown here, has nothing to do with the true Lagrangian of the original model.

In the LF case, the field equations are solved byΨ2(x) = e−igφ(x)ψ2(x), 2i∂+ψ2 = mψ1,
Ψ1(x) = e−igφ(x)ψ1(x), 2i∂−ψ1 = mψ2. Inserting these solutions into the LF Lagrangian yields

Ll f = iψ2
†

↔
∂+ ψ2 + iψ1

†
↔
∂− ψ1−m(ψ1

†ψ2 + ψ2
†ψ1)+2∂+φ∂−φ − 1

2
µ2φ2. (2.17)

The free Hamiltonian (2.13) follows. This result is the sameas we obtained with the conventional
treatment. The reason is that there is no kinetic (i.e., derivative) term in LF Hamiltonian.

The form of the correlation functions coincides with the space-like treatment. For example,

〈0|Ψ1(x)Ψ†
2(y)|0〉 = eg2D(+)(x−y)S(+)

12 (x−y),

S(+)
12 (x−y) = 〈0|ψ1(x)ψ†

2(y)|0〉 =

∞
∫

0

dp+

8π
m
p+

e
− i

2 p+(x−−y−−iε)− i
2

m2

p+ (x+−y+−iε)
,

S(+)
12 (z) = −θ

(

z2)m
8

[

N0
(

m
√

z2
)

+ i sgn(z+)J0(m
√

z2)
]

+ θ
(

−z2)
m
4π

K0
(

m
√

−z2
)

.(2.18)

J0,N0 andK0 are the Bessel functions. The scalar-field function isD(+)(z) = m−1S(+)
12 (z). The

small imaginary (damping) factors guarantee existence of the corresponding integrals.
Note that the scalar-field correlation function diverges for µ = 0 in both schemes. The LF

calculation with the massless fermion field is inconsistent(yields vanishingS(+)
11 (z).) Them= 0

limit of the LF fermion correlation function coincides however with the SL case.
The Lagrangian of the massive Rothe-Stamatescu model is identical with (2.1) except that the

interaction term hasjµ
5 instead of jµ . However, since the massivejµ

5 current is not conserved,
the model has a more complicated structure. Here, we will only make two remarks. First, due to
nonconservation of the axial-vector current, the (pseudo)scalar field is no longer free. The Dirac
equation seems naively to have an operator solution similarto the one from the DCM,Ψ(x) =

e−igγ5φ(x)ψ(x). However, this expression actually does not solve the equation due to{γµ ,γ5} = 0.
Thus, the massive RS model is not exactly solvable. On the other hand, the Dirac equation in the
original RS model can be solved exactly but inserting the solution to the Lagrangian generates the
free Hamiltonian. The overall picture is thus similar to themassive derivative-coupling model.

3. The Thirring model

The operator solution of the Thirring model was given by Klaiber [9] who also calculated n-
point correlation functions. The model may seem obsolete and uninteresting today, but actually
not all of its aspects have been adequately clarified. A systematic Hamiltonian study based on the
model’s solvability was not given so far.
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The classical Lagrangian density of the Thirring model is

L =
i
2

Ψγµ
↔
∂µ Ψ− 1

2
gJµJµ , Jµ = ΨγµΨ. (3.1)

The field equations areiγµ∂µΨ(x) = gJµ(x)γµ Ψ(x) with ∂µJµ(x) = 0. The simplest solution is

Ψ(x) = e−i(g/
√

π) j(x)ψ(x), γµ∂µΨ(x) = 0, jµ(x) =
1√
π

∂µ j(x), Jµ(x) = jµ(x). (3.2)

It depends on the "integrated currentj(x). Free fields define the solution of the interacting model.
Details of the canonical treatment of the model can be found in [10]. The main difference with
respect to our previous analysis is that we insert the operator solution to the Lagrangian first:

L = iΨγµ[

− ig√
π

∂µ jΨ+e−
ig√

π j∂µψ
]

− g
2

jµ jµ . (3.3)

The first term in the bracket combines with the interaction term reversing its sign. We get

H =

+∞
∫

−∞

dx1
[

− iψ†α1∂1ψ − 1
2

g
(

j0 j0− j1 j1
)

]

≡ H0+Hint . (3.4)

The interacting Hamiltonian has the simplest form in terms of composite operatorsc(k1),c†(k1):

Hint =
g
π

+∞
∫

−∞

dk1|k1|
[

c†(k1)c†(−k1)+c(k1)c(−k1)
]

. (3.5)

Obviously|0〉 is not an eigenstate ofH = H0+Hint . The true lowest-energy eigenstate ofH can be
found by its diagonalization using a suitable unitary operator U(γ) [10, 11],U(γ)HU−1(γ)|0〉 = 0.
It follows thatU−1(γ)|0〉 will be the physical vacuum state. Explicitly, one finds (γd = 1

2artanhg/π)

|Ω〉 = exp
[

− 1
2

γd

+∞
∫

−∞

dp1[c†(p)c†(−p)−c(p)c(−p)
]

]

|0〉. (3.6)

It corresponds to a coherent state of pairs of composite bosons with zero total momentum,P1|Ω〉=

0. The vacuum|Ω〉 also carries vanishing charge and axial charge and corresponds to the symmetric
phase. The correlation functions can be calculated from thenormal-ordered operator solution (3.2)
using an infrared cutoff and the new vacuum state|Ω〉. Calculations of the particle spectrum are
also possible using the discrete plane-wave basis. They will be nontrivial since[c(k1),b(p1)] 6= 0.

4. The Federbush model

The Federbush model (FM) is the only knownmassivesolvable model. It permits us to gener-
alize the Klaiber’s bosonization to the massive case and to search for the true physical ground state
generalizing the SL treatment applied to the massless Thirring model. The Lagrangian of the FM
describes two species of the fermion field interacting via specific current– current coupling,

L =
i
2

Ψγµ
↔
∂µ Ψ−mΨΨ+

i
2

Φγµ
↔
∂µ Φ−µΦΦ−gεµνJµHν . (4.1)

6
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HereJµ = ΨγµΨ, Hµ = ΦγµΦ. The field equations are

iγµ∂µΨ(x) = mΨ(x)+gεµνγµHν(x)Ψ(x), iγµ∂µΦ(x) = µΦ(x)−gεµν γµJν(x)Φ(x). (4.2)

The relationsJµ(x) = ε µν∂ν j(x)/
√

π , Hµ(x) = ε µν∂νh(x)/
√

π define the "integrated currents"
j(x) andh(x). They enter into the solutions in an "off-diagonal" way:

Ψ(x) = e−i g√
π h(x)ψ(x), iγµ∂µψ(x) = mψ(x), Φ(x) = ei g√

π j(x)φ(x), iγµ∂µφ(x) = µφ(x). (4.3)

The exponentials of the composite fields are more singular than in the massless case and have to
be defined using the "triple-dot ordering" [12, 13] which generalizes the normal ordering defined
through order by order subtractions of VEVs. We avoid this bybosonization of the massive current.

The usual treatment yields contradictory dynamics: the SL Hamiltonian contains interaction,

H =

+∞
∫

−∞

dx1
[

− i
2

ψ†α1
↔
∂1 ψ +mψ†γ0ψ − i

2
φ†α1

↔
∂1 φ + µφ†γ0φ −g j0h1 +g j1h0

]

, (4.4)

while the LF Hamiltonian (obtained after inserting two fermion constraints), is free:

P− =

+∞
∫

−∞

dx−

2

[

m
(

ψ1
†ψ2 + ψ2

†ψ1
)

+ µ
(

φ1
†φ2 + φ2

†φ1

)]

. (4.5)

Our approach leads to a different result. Inserting the solutions (4.3) into the Lagrangian, we get

L =
i
2

ψ†γ0γµ
↔
∂µ ψ −mψψ +

i
2

φ†γ0γµ
↔
∂µ φ −µφφ +gεµν jµhν ,

H =

+∞
∫

−∞

dx1[− iψ†α1∂1ψ +mψψ − iφ†α1∂1φ + µφφ +g
(

j0h1− j1h0)]. (4.6)

Both operators are expressed in terms of free fields and have an opposite sign (with respect to the
conventional result) in the interaction piece. The interaction term is non-diagonal when expressed
in terms of bosonized massive currents. A massive version ofthe Bogoliubov transformation is
required. The massive analogues of Klaiber’s operatorsc(k1) are surprisingly complicated [14].

The LF version of the Lagrangian (4.1) is:

Ll f = iΨ†
2

↔
∂+ Ψ2 + iΨ†

1

↔
∂− Ψ1−m

(

Ψ†
2Ψ1 + Ψ†

1Ψ2
)

+ iΦ†
2

↔
∂+ Φ2 + iΦ†

1

↔
∂− Φ1−

−µ
(

Φ†
2Φ1 + Φ†

1Φ2
)

− g
2

j+h− +
g
2

j−h+. (4.7)

The LF current components arej+(x)= J+(x)= 2 :ψ†
2(x)ψ2(x) :, j−(x)= J−(x)= 2 :ψ†

1(x)ψ1(x) :,
h+(x) = H+(x) = 2 : φ†

2 (x)φ2(x) :, h−(x) = H−(x) = 2 : φ†
1 (x)φ1(x). The coupled field equations

2i∂+Ψ2(x) = mΨ1−gh−Ψ2, 2i∂−Ψ1 = mΨ2 +gh+Ψ1,

2i∂+Φ2(x) = µΦ1 +g j−Φ2, 2i∂−Φ1 = µΦ2−g j+Φ1. (4.8)

are solved in terms of the corresponding free fields (4.3) andthe LF integrated currents,

j(x) =

√
π

4

+∞
∫

−∞

dz−ε(x−−z−) j+(x+,z−), h(x) =

√
π

4

+∞
∫

−∞

dz−ε(x−−z−)h+(x+,z−). (4.9)
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The bosonized form of the LF Hamiltonian is quadratic in composite operators and diagonal:

P−
g =

g
8π

+∞
∫

−∞

dk1k+
[

A†(k+)D(k+)+D†(k+)A(k+)−B†(k+)C(k+)−C†(k+)B(k+)
]

. (4.10)

The operatorsA(k+), B(k+), C(k+) andD(k+) correspond toj+, h+, j− andh−. Their form is as
simple as the masslessc(k1) in the SL case. For example,

A(k+,x+) =
i√
k+

∞
∫

0

dp+
{

[

b†(p+)b(k+ + p+)−d†(p+)d(p+ +k+)
]

e
i
2

m2k+x+

p+(k+ p+) +

+d(p+)b(k+ − p+)e
− i

2
m2k+x+

p+(k+−p+)

}

. (4.11)

Complexities will enter in calculations of the correlationfunctions since the composite LF boson
operators do not commute to the delta function at unequal LF times [14]. The SL Hamiltonian
is not diagonal. It will be very interesting to see how the SL and LF schemes generate mutually
consistent results for the correlators given the completely different vacuum structure in the two
formulations of the relativistic dynamics of the Federbushmodel.
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