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1. Introduction

The AdS/CFT correspondence [1] between string states on Anti–de Sitter (AdS) space-time
and conformal field theories (CFT) in physical space-time has brought a new perspective for the
study of the dynamics of strongly coupled quantum field theories and has led to new analytical
insights into the confining dynamics of QCD, which is difficult to realize using other methods. In
practice, the duality provides an effective gravity description in a (d +1)-dimensional AdS space-
time in terms of a flat d-dimensional conformally-invariant quantum field theory defined at the AdS
asymptotic boundary. [2] Thus, in principle, one can compute physical observables in a strongly
coupled gauge theory in terms of a classical gravity theory.

The original correspondence [1] is the duality between N = 4 supersymmetric SU(NC) Yang-
Mills theory (SYM) and the supergravity approximation to Type IIB string theory on AdS5× S5

space. QCD is fundamentally different from SYM theories where all the matter fields transform in
adjoint multiplets of SU(NC). Unlike SYM theories, where the conformal invariance implies that
the coupling does not run with energy, its scale invariance is broken in QCD by quantum effects.

The most general group of transformations that leave the AdS metric

ds2 =
R2

z2

(
ηµνdxµdxν −dz2) , (1.1)

invariant, the isometry group, has dimensions (d +1)(d +2)/2. Thus, for d = 4, five dimensional
anti-de Sitter space AdS5 has 15 isometries, in agreement with the number of generators of the
conformal group in four dimensions. The metric (1.1) is invariant under the transformation x→ λx,
z→ λ z. The variable z is thus like a scaling variable in Minkowski space: different values of z
correspond to different energy scales at which the hadron is examined.

A gravity dual of QCD is not known, and it has proven difficult to extend the gauge/gravity du-
ality beyond theories which are to a great extent constrained by their symmetries. We shall follow
here a simplified approach, which is limited to the study of the propagation of hadronic modes in a
fixed effective gravitational background which encodes salient properties of the QCD dual theory,
such as the ultraviolet conformal limit at the AdS boundary at z→ 0, as well as modifications of
the background geometry in the large z infrared region from confinement. The introduction of an
infrared cutoff at a finite value z0∼ΛQCD is a simple way to get confinement and discrete normaliz-
able modes. Thus the “hard-wall” at z0 breaks conformal invariance and allows the introduction of
the QCD scale and a spectrum of particle states. [3] As first shown by Polchinski and Strassler, [3]
the AdS/CFT duality, modified to incorporate a mass scale, provides a derivation of dimensional
counting rules [4, 5] for the leading power-law fall-off of hard scattering beyond the perturbative
regime. The modified theory generates the hard behavior expected from QCD, instead of the soft
behavior characteristic of strings.

In the usual AdS/QCD approach [6, 7] bulk fields are introduced to match the SU(2)L ×
SU(2)R chiral symmetries of QCD and its spontaneous breaking, but without explicit connection
with the internal constituent structure of hadrons. [8] Instead, axial and vector currents become the
primary entities as in effective chiral theory. The conformal metric of AdS space can be modi-
fied within the gauge/gravity framework with the introduction of a dilaton field to reproduce the
observed linear Regge behavior in the hadronic spectrum. [9] The additional warp factor in the met-
ric, or, equivalently, the introduction of a dilaton background ϕ(z) introduces an energy scale in
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the five-dimensional Lagrangian, thus breaking the conformal invariance. A particularly interesting
case is a dilaton profile exp

(
±κ2z2

)
of either sign, the “soft-wall”, since it leads to linear Regge

trajectories [9] and avoids the ambiguities in the choice of boundary conditions at the infrared wall.
Light-front quantization is the ideal framework to describe the structure of hadrons in terms

of their quark and gluon degrees of freedom. The simple structure of the light-front (LF) vacuum
allows an unambiguous definition of the partonic content of a hadron in QCD and of hadronic
light-front wavefunctions (LFWFs) which relate its quark and gluon degrees of freedom to their
asymptotic hadronic state. The LFWFs of relativistic bound states in QCD provide a description
of the structure and internal dynamics of hadronic states in terms of their constituent quark and
gluons at the same LF time τ = x0 + x3, the time marked by the front of a light wave, [10] instead
of the ordinary instant time t = x0. The constituent spin and orbital angular momentum properties
of the hadrons are also encoded in the LFWFs. Unlike instant time quantization, the Hamiltonian
equation of motion in the light-front is frame independent and has a structure similar to the eigen-
mode equations in AdS space. This makes a direct connection of QCD with AdS/CFT methods
possible. The identification of orbital angular momentum of the constituents is a key element in
our description of the internal structure of hadrons using holographic principles, since hadrons with
the same quark content but different orbital angular momentum have different masses.

A physical hadron in four-dimensional Minkowski space has four-momentum Pµ and invariant
hadronic mass states determined by the light-front Lorentz-invariant Hamiltonian equation for the
relativistic bound-state system PµPµ |ψ(P)〉 = M2|ψ(P)〉, where the operator PµPµ is determined
canonically from the QCD Lagrangian. On AdS space the physical states are represented by nor-
malizable modes ΦP(x,z) = e−iP·xΦ(z), with plane waves along Minkowski coordinates xµ and a
profile function Φ(z) along the holographic coordinate z. The hadronic invariant mass PµPµ = M2

is found by solving the eigenvalue problem for the AdS wave equation. Each light-front hadronic
state |ψ(P)〉 is dual to a normalizable string mode ΦP(x,z). For fields near the AdS boundary the
behavior of Φ(z) depends on the scaling dimension of corresponding interpolating operators.

We have shown recently a remarkable connection between the description of hadronic modes
in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the
light-front at equal light-front time τ . [11] Indeed, one may take the LF bound state Hamiltonian
equation of motion in QCD as a starting point to derive relativistic wave equations in terms of
an invariant transverse variable ζ , which measures the separation of the quark and gluonic con-
stituents within the hadron at the same LF time. The result is a single-variable light-front rela-
tivistic Schrödinger equation, which is equivalent to the equations of motion which describe the
propagation of spin-J modes in a fixed gravitational background asymptotic to AdS space. Its
eigenvalues give the hadronic spectrum and its eigenmodes represent the probability distribution of
the hadronic constituents at a given scale. Remarkably, the AdS equations correspond to the kinetic
energy terms of the partons inside a hadron, whereas the interaction terms build confinement and
correspond to the truncation of AdS space in an effective dual gravity approximation. [11]

Light-front holographic mapping was originally obtained by matching the expression for elec-
tromagnetic current matrix elements in AdS space with the corresponding expression for the cur-
rent matrix element using light-front theory in physical space time. [12, 13] More recently we
have shown that one obtains the identical holographic mapping using the matrix elements of the
energy-momentum tensor. [14]
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2. A Semiclassical Approximation to QCD

We start with the QCD light-front Hamiltonian equation for a relativistic bound state |ψ〉

PµPµ |ψ(P)〉= M2|ψ(P)〉, (2.1)

where M2 is the invariant hadron mass and PµPµ = P−P+−P2
⊥. We can compute M2 from the

hadronic matrix element

〈ψ(P′)|PµPµ |ψ(P)〉= M2〈ψ(P′)|ψ(P)〉, (2.2)

expanding the initial and final hadronic states in terms of their Fock basis of non interacting com-
ponents: |ψ〉= ∑n ψn|n〉. The matrix element can then be expressed as a sum of overlap integrals
with diagonal elements for the non interacting terms in the LF Hamiltonian. We find [11]

M2 = ∑
n

n−1

∏
j=1

∫
dx j d2b⊥ j ψ

∗
n (x j,b⊥ j)∑

q

(
−∇

2
b⊥q

+m2
q

xq

)
ψn(x j,b⊥ j)+(interactions), (2.3)

where the light-front wave functions ψ depend only on the n−1 independent relative partonic
coordinates, the longitudinal momentum fraction xi = k+

i /P+, the transverse impact variables b⊥i

(canonical conjugate to the transverse momentum k⊥i) and λi, the projection of the constituent’s
spin along the z direction. Momentum conservation requires ∑

n
i=1 xi = 1 and ∑

n
i=1 b⊥i = 0. The

normalization is defined by

∑
n

n−1

∏
j=1

∫
dx jd2b⊥ j

∣∣ψn(x j,b⊥ j)
∣∣2 = 1. (2.4)

To simplify the discussion we will consider a two-parton bound state. In the limit mq→ 0

M2 =
∫ 1

0

dx
x(1− x)

∫
d2b⊥ψ

∗(x,b⊥)
(
−∇

2
b⊥
)

ψ(x,b⊥)+(interactions). (2.5)

To identify the key variable in (2.3) we notice that the functional dependence for a given
Fock state is given in terms of its off-mass shell energy M2−M2

n , where M2
n =

(
∑

n
i=1 kµ

i

)2. For

n = 2, M2
n=2 = k2

⊥
x(1−x) . Similarly, in impact space the relevant variable for a two-parton state is

ζ 2 = x(1−x)b2
⊥. As a result, to first approximation LF dynamics depend only on the boost invariant

variable Mn or ζ , and hadronic properties are encoded in the hadronic mode φ(ζ ) from the relation,

ψ(x,ζ ,ϕ) = eiLϕX(x)
φ(ζ )√

2πζ
, (2.6)

thus factoring out the angular dependence ϕ and the longitudinal, X(x), and transverse mode φ(ζ ).
We choose the normalization of the LF mode φ(z) = 〈ζ |ψ〉 as 〈φ |φ〉=

∫
dζ |〈ζ |φ〉|2 = 1.

We can write the Laplacian operator in (2.5) in circular cylindrical coordinates (ζ ,ϕ) with ζ =√
x(1− x)|b⊥|: ∇2

ζ
= 1

ζ

d
dζ

(
ζ

d
dζ

)
+ 1

ζ 2
∂ 2

∂ϕ2 , and factor out the angular dependence of the modes in
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terms of the SO(2) Casimir representation L2 of orbital angular momentum in the transverse plane.
Using (2.6) we find [11]

M2 =
∫

dζ φ
∗(ζ )

√
ζ

(
− d2

dζ 2 −
1
ζ

d
dζ

+
L2

ζ 2

)
φ(ζ )√

ζ
+
∫

dζ φ
∗(ζ )U(ζ )φ(ζ ), (2.7)

where L = Lz. In writing the above equation we have summed up the complexity of the interaction
terms in the QCD Lagrangian in the addition of the effective potential U(ζ ), which is then modeled
to enforce confinement at some IR scale. The light-front eigenvalue equation PµPµ |φ〉= M2|φ〉 is
thus a light-front wave equation for φ(

− d2

dζ 2 −
1−4L2

4ζ 2 +U(ζ )
)

φ(ζ ) = M2
φ(ζ ), (2.8)

an effective single-variable light-front Schrödinger equation which is relativistic, covariant and an-
alytically tractable. Its eigenmodes φ(ζ ) = 〈ζ |φ〉 determine the hadronic mass spectrum and rep-
resent the probability amplitude to find n-partons at transverse impact separation ζ , the invariant
separation between pointlike constituents within the hadron [12] at equal light-front time. Exten-
sion of the results to arbitrary n follows from the x-weighted definition of the transverse impact
variable of the n−1 spectator system: [12]

ζ =
√

x
1− x

∣∣∣ n−1

∑
j=1

x jb⊥ j

∣∣∣, (2.9)

where x = xn is the longitudinal momentum fraction of the active quark. One can also generalize
the equations to allow for the kinetic energy of massive quarks using (2.3). In this case, however,
the longitudinal mode X(x) does not decouple from the effective LF bound-state equations.

3. Higher Spin Hadronic Modes in AdS Space

The description of higher spin modes in AdS space is a notoriously difficult problem. [15, 16]
A spin-J field in AdSd+1 is represented by a rank J tensor field Φ(xA)M1···MJ , which is totally
symmetric in all its indices. Such a tensor contains also lower spins, which can be eliminated by
imposing gauge conditions. The action for a spin-J field in AdSd+1 space time in presence of a
dilaton background field ϕ(z) is given by

S =
1
2

∫
ddxdz

√
geϕ(z)

(
gNN′gM1M′1 · · ·gMJM′J DNΦM1···MJ DN′ΦM′1···M′J

−µ
2gM1M′1 · · ·gMJM′J ΦM1···MJ ΦM′1···M′J + · · ·

)
, (3.1)

where DM is the covariant derivative which includes parallel transport

[DN ,DK ]ΦM1···MJ =−RL
M1NKΦL···MJ −·· ·−RL

MJNKΦM1···L, (3.2)

and the omitted terms refer to terms with different contractions. Conformal invariance in (3.1) is
broken by ϕ(z) which is a function of the holographic coordinate z and vanishes in the conformal

5



P
o
S
(
L
C
2
0
1
0
)
0
2
9

Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics Guy F. de Téramond

limit z→ 0. The coordinates of AdS are the Minkowski coordinates xµ and the holographic variable
z labeled xM = (xµ ,z).

A physical hadron has plane-wave solutions and polarization indices µi, i = 1 · · ·J, along the
3 + 1 physical coordinates ΦP(x,z)µ1···µJ = e−iP·xΦ(z)µ1···µJ , with four-momentum Pµ and invariant
hadronic mass PµPµ =M2. All other components vanish identically: Φzµ2···µJ = · · ·= Φµ1µ2···z = 0.
One can then construct an effective action in terms of high spin modes ΦJ = Φµ1µ2···µJ , with only
the physical degrees of freedom. [9, 17] In this case the system of coupled differential equations
which follow from (3.1) reduce to a homogeneous equation in terms of the physical field ΦJ .

We retain only physical modes Φµ1µ2···µJ , and start with the scalar wave equation which follows
from the variation of (3.1) for J = 0. This case is particularly simple as the covariant derivative of
a scalar field is the usual derivative. We obtain the eigenvalue equation[

− zd−1

eϕ(z) ∂z

(
eϕ(z)

zd−1 ∂z

)
+
(

µR
z

)2
]

Φ = M2
Φ. (3.3)

A physical spin-J mode Φµ1···µJ with all indices along 3+1 is then constructed by shifting dimen-
sions ΦJ(z) = (z/R)−JΦ(z). Its normalization is given by

Rd−1−2J
∫

∞

0

dz
zd−1−2J eϕ(z)

Φ
2
J(z) = 1. (3.4)

The shifted field Φµ1µ2···µJ obeys the wave equation [11, 18][
−zd−1−2J

eϕ(z) ∂z

(
eϕ(z)

zd−1−2J ∂z

)
+
(

µR
z

)2
]

Φµ1µ2···µJ = M2
Φµ1µ2···µJ , (3.5)

which follows from (3.3) upon mass rescaling (µR)2→ (µR)2−J(d−J) and M2→M2−Jz−1∂zϕ .
For J = 1 our results are identical with the wave equation for a massive AdS vector field in presence
of a dilaton background.

4. Light-Front Holographic Mapping and Hadronic Spectrum

The structure of the QCD Hamiltonian equation (2.1) is similar to the structure of the AdS
wave equation (3.5); they are both frame-independent and have identical eigenvalues M2, the mass
spectrum of the color-singlet states of QCD, a possible indication of a more profound connection
between physical QCD and the physics of hadronic modes in AdS space. However, important dif-
ferences are also apparent: Eq. (2.1) is a linear quantum-mechanical equation of states in Hilbert
space, whereas Eq. (3.5) is a classical gravity equation; its solutions describe spin-J modes propa-
gating in a higher dimensional warped space. Physical hadrons are composite and thus inexorably
endowed of orbital angular momentum. Thus, the identification of orbital angular momentum is of
primary interest in finding a connection between both approaches.

As shown in the Sect. 2, one can indeed systematically reduce the LF Hamiltonian eigenvalue
Eq. (2.1) to an effective relativistic wave equation, analogous to the AdS equations, by observing
that each n-particle Fock state has an essential dependence on the invariant mass of the system
and thus, to a first approximation, LF dynamics depend only on M2

n . In impact space the relevant

6
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variable is the boost invariant variable ζ (2.9) which measures the separation of the constituents
and which also allows one to separate the dynamics of quark and gluon binding from the kinematics
of the constituent internal angular momentum.

Upon the substitution z→ζ and φJ(ζ ) = (ζ/R)−3/2+J eϕ(z)/2 ΦJ(ζ ), in (3.5), we find for d = 4
the QCD light-front wave equation (2.8) with effective potential [18]

U(ζ ) =
1
2

ϕ
′′(z)+

1
4

ϕ
′(z)2 +

2J−3
2z

ϕ
′(z), (4.1)

The fifth dimensional mass µ is not a free parameter but scales as (µR)2 =−(2− J)2 +L2.
If L2 < 0 the LF Hamiltonian is unbounded from below 〈φ |HLF |φ〉 < 0 and the spectrum

contains an infinite number of negative values of M2, which can be arbitrarily large. The critical
value L = 0 corresponds to the lowest possible stable solution, the ground state of the light-front
Hamiltonian. For J = 0 the five dimensional mass µ is related to the orbital momentum of the
hadronic bound state by (µR)2 =−4+L2 and thus (µR)2 ≥−4. The quantum mechanical stability
condition L2 ≥ 0 is thus equivalent to the Breitenlohner-Freedman stability bound in AdS. [19] The
scaling dimensions are 2 + L independent of J in agreement with the twist-scaling dimension of a
two-parton bound state in QCD. It is important to notice that in the light-front the SO(2) Casimir
for orbital angular momentum L2 is a kinematical quantity, in contrast with the usual SO(3) Casimir
L(L+1) from non-relativistic physics which is rotational, but not boost invariant.

We consider here the positive-sign dilaton profile exp(+κ2z2) which confines the constituents
to distances 〈z〉 ∼ 1/κ . [20, 21] From (4.1) we obtain the effective potential [20] U(ζ ) = κ4ζ 2 +
2κ2(L +S−1), where Jz = Lz +Sz, which corresponds to a transverse oscillator in the light-front.
Equation (2.8) has eigenfunctions

φn,L(ζ ) = κ
1+L

√
2n!

(n+L)!
ζ

1/2+Le−κ2ζ 2/2LL
n(κ

2
ζ

2), (4.2)

and eigenvalues

M2
n,L,S = 4κ

2
(

n+L+
S
2

)
. (4.3)

The meson spectrum has a string-theory Regge form: the square of the masses are linear
in both the internal orbital angular momentum L and radial quantum number n, where n counts
the number of nodes of the wavefunction in the radial variable ζ . The spectrum also depends
on the internal spin S. The lowest possible solution for n = L = S = 0 has eigenvalue M2 = 0.
This is a chiral symmetric bound state of two massless quarks with scaling dimension 2 and size
〈ζ 2〉 ∼ 1/κ2, which we identify with the lowest state, the pion. Thus one can compute the hadron
spectrum by simply adding 4κ2 for a unit change in the radial quantum number, 4κ2 for a change
in one unit in the orbital quantum number and 2κ2 for a change of one unit of spin to the ground
state value of M2. Remarkably, the same rule holds for baryons. [20] This is an important feature
of light-front holography, which predicts the same multiplicity of states for mesons and baryons as
it is observed experimentally. [22] The LFWFs (4.2) for different orbital and radial excitations are
depicted in Fig. 1.

Individual hadron states are identified by their interpolating operators at z→ 0. Pion inter-
polating operators are constructed by examining the behavior of bilinear covariants ψΓψ under
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Figure 1: Light-front wavefunctions φn,L(ζ ) is physical spacetime corresponding to a dilaton exp(κ2z2): a)
orbital modes (n = 0) and b) radial modes (L = 0).

charge conjugation and parity transformation. Thus, for example, a pion interpolating operator
qγ5q create a state with quantum numbers JPC = 0−+, and a vector meson interpolating operator
qγµq a state 1−−. Likewise the operator qγµγ5q creates a state with 1++ quantum numbers, the
a1(1260) positive parity meson. If we include orbital excitations the pion interpolating operator
is O2+L = qγ5D{`1 · · ·D`m}q. This is an operator with total internal orbital momentum L = ∑

m
i=1 `i,

twist τ = 2+L and canonical dimension ∆ = 3+L. The scaling of the AdS field Φ(z)∼ zτ at z→ 0
is precisely the scaling required to match the scaling dimension of the local meson interpolating
operators. The spectral predictions for light meson and vector meson states are compared with
experimental data in Fig. 2 for the positive sign dilaton model discussed here.
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Figure 2: Parent and daughter Regge trajectories for (a) the π-meson family with κ = 0.6 GeV; and (b) the
I =1 ρ-meson and I =0 ω-meson families with κ = 0.54 GeV. Only confirmed PDG states [23] are shown.

5. Higher Fock Components in Light Front Holography

The light front holographic variable ζ (2.9) is particularly useful in describing a multiple
parton state, as it incorporates a cluster decomposition: one particle (the active quark) vs. the rest
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(the spectator system). Thus, for example, for a baryon the LF cluster decomposition is equivalent
to a quark-diquark system, and this may explain why LF holography is successful in predicting the
same multiplicity of meson and baryon states. [20]

The LF Hamiltonian eigenvalue equation (2.1) is a matrix in Fock space. Writing PµPµ ≡HLF

as a sum of terms representing the kinetic energy of the partons H0
LF plus an interaction potential

V , HLF = H0
LF +V , we find upon expanding in Fock eigenstates of H0

LF , |ψ〉= ∑n ψn|n〉,(
M2−

n

∑
i=1

k2
⊥i +m2

xi

)
ψn = ∑

m
〈n|V |m〉ψm, (5.1)

which represents an infinite number of coupled integral equations. In AdS/QCD the only interac-
tion is the confinement potential. The resulting potential in quantum field theory is the four-point
effective interaction HI = ψψ V

(
ζ 2
)

ψψ , which leads to qq→ qq , qq→ qq, q→ qqq and q→ qqq,
thus creating states with extra quark-antiquark pairs. In this approximation there is no mixing with
the qqg Fock states from the interaction term gsψγ ·Aψ in QCD. Since models based on AdS/QCD
are particularly successful in the description of exclusive processes, [24] this may explain the dom-
inance of quark interchange [25] over quark annihilation or gluon exchange contributions in large
angle elastic scattering. [26]

To show the relevance of higher Fock states we discuss in the next section a simple semi-
phenomenological model where we include the first two components in a Fock expansion of the
pion wave function |π〉 = ψqq/π |qq〉τ=2 + ψqqqq|qqqq〉τ=4 + · · · , where the JPC = 0−+ twist-two
and twist-4 states |qq〉 and |qqqq〉 are created by the interpolating operators qγ5q and qγ5qqq re-
spectively.

6. Space- and Time-Like Structure of the Pion Form Factor

In the soft wall model the electromagnetic probe propagates in modified AdS metrics. As a
result the current is dual to a dressed current, i.e., a hadronic electromagnetic current including
virtual qq pairs and thus confined. In this case, the bulk-to-boundary propagator J(Q,z) has the
integral representation [27]

J(Q,z) = κ
2z2
∫ 1

0

dx
(1− x)2 x

Q2

4κ2 e−κ2z2x/(1−x). (6.1)

The form factor corresponding to (6.1) for a state with twist τ = N, is expressed as an N−1 product
of poles, corresponding to the first N−1 states along the vector meson radial trajectory [13]

F(Q2) =
1(

1+ Q2

M 2
ρ

)(
1+ Q2

M 2
ρ ′

)
· · ·
(

1+ Q2

M 2
ρN−2

) . (6.2)

For a pion, for example, the lowest Fock state – the valence state – is a twist 2 state, and thus
the form factor is the well known monopole form. [13] Since the charge form factor is a diagonal
operator, the final expression for the form factor corresponding to the truncation up to twist four
is the sum of two terms, a monopole and a three-pole term. In the strongly coupled semiclassical
gauge/gravity limit hadrons have zero widths and are stable. One can nonetheless modify the
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formula (6.2) to introduce a finite width: q2→ q2 + 2iκΓ. We choose the values Γρ = 130 MeV,
Γρ = 400 MeV and Γρ = 300 MeV. The results for the pion form factor with higher Fock states
(twist two and four) are shown in Fig. (6). The results correspond to Pqqqq = 13 %, the admixture
of the |qqqq〉 state. The value of Pqqqq (and the widths) are input in the model. The value of κ is
determined from the ρ mass and the masses of the radial excitations follow from (4.3). The time-
like structure of the pion form factor displays a rich pole structure with constructive and destructive
interferences.

Conserved currents correspond to five dimensional massless fields in AdS according to the
relation (µR)2 = (∆− p)(∆+ p−4) for a p form in d = 4. In the usual AdS/QCD framework [6, 7]
this corresponds to ∆ = 3 or 1, the canonical dimensions of an EM current and field strength
respectively. Normally one uses a hadronic interpolating operator with minimum twist τ to identify
a hadron to predict the power-law fall-off behavior of its form factors and other hard scattering
amplitudes; [3] e.g., for a two-parton bound state τ = 2. However, in the case of a current, one
needs to use an effective field operator with dimension ∆ = 3. The apparent inconsistency between
twist and dimension is removed by noticing that in the light-front one chooses to calculate the
matrix element of the twist-3 plus component of the current J+, [12, 13] in order to avoid coupling
to Fock states with different numbers of constituents.

Q2 FΠIQ2M

Q2 GeV2

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q2 GeV2

log FΠIQ2MMΡ
2

M
Ρ
¢

2

M
Ρ
¢¢

2

0 1 2 3 4 5

-2

-1

0

1

2

Figure 3: Structure of the space- and time-like pion form factor in light-front holography for a truncation
of the pion wave function up to twist four. Triangles are the data compilation from Baldini et al., [28] red
squares are JLAB 1 [29] and green squares are JLAB 2. [30]

7. Conclusions

Light-front holography provides a direct correspondence between an effective gravity theory
defined in a fifth-dimensional warped space and a semiclassical approximation to strongly coupled
QCD quantized on the light-front. This duality leads to a remarkable Lorentz-invariant relativistic
Schrödinger-like equation [11] which provides a successful prediction for the light-quark meson
and baryon spectra as a function of hadron spin, quark angular momentum, and radial quantum
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numbers. It also predicts the same multiplicity of states for mesons and baryons, which is observed
experimentally. We originally derived this correspondence using the identity between electromag-
netic and gravitational form factors computed in AdS and light-front theory. [12, 13, 14] The re-
sults for hadronic form factors are also successful, and the predicted power law fall-off agrees
with dimensional counting rules as required by conformal invariance at small z. [13, 31] As in the
Schrödinger equation, the semiclassical approximation to light-front QCD described in this paper
does not account for particle creation and absorption; it is thus expected to break down at short
distances where hard gluon exchange and quantum corrections become important. However, one
can systematically improve the semiclassical approximation, for example by introducing nonzero
quark masses and short-range Coulomb corrections. [32, 33] We have discussed the relevance of
higher Fock-states for describing the detailed structure of form factors. A simple model including
twist-two and twist-four Fock components for the pion wavefunction describes remarkable well the
pole structure and the effects of constructive and destructive interferences in the time-like region.

The hadron eigenstate generally has components with different orbital angular momentum.
For example, the proton eigenstate in light-front holography with massless quarks has L = 0 and
L = 1 light-front Fock components with equal probability – a novel manifestation of chiral invari-
ance. [34] Light-front holographic mapping of effective classical gravity in AdS space, modified
by the positive-sign dilaton background, predicts the form of a non-perturbative effective coupling
αs(Q) and its β -function. [35] The AdS running coupling is in very good agreement with the ef-
fective coupling extracted from the Bjorken sum rule. [36] The holographic β -function displays a
transition from nonperturbative to perturbative regimes at a momentum scale Q∼ 1 GeV.
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