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1. Introduction

According to the common AdS / CFT dictionary, operators in a field theory have dimensions
related to the conformal dimension of dual modes that are propagating inside the bulk, but in
general these dimensions are not considered. A property of anomalous dimensions is his scale
dependence, and this can be taken into account in the AdS side using a mass term that depends
on the holographical coordinate for the dual modes that are related to the operator with anomalous
dimensions. In this talk we discuss this alternative in AdS / QCD models that consider explicitly
the effect of chiral symmetry breaking in the lagrangian [1, 2]

One kind of such models, known as hard wall, allows to break chiral symmetry both sponta-
neously and explicitly in an independent way, but the hadronic spectra calculated in this case turns
out to be not satisfactory. This situation can be improved by the introduction of a dilaton field,
which in many articles is considered quadratic in the holographical coordinate z [3]. The obtained
spectra has Regge behavior, but unfortunately it is not possible now to break chiral symmetry ex-
plicitly and spontaneously [4].

The satisfactory implementation of chiral symmetry breaking, without sacrificing the hadronic
spectra, is a problem that has attracted much interest lately. Examples of these kind of efforts can
be found in [5, 6, 7, 8, 9]. In this talk we show a different alternative, since we consider that
the mass for modes propagating inside the bulk can present a dependence on the holographical
coordinate z [10], which could be due to the fact that operators associated to these modes might
have an anomalous dimension [11].

It is possible to find references to z dependent masses in the literature [11], where the authors
suggest that the anomalous dimension of operators can be translated into z dependent masses for
dual modes of these operators. This idea was used successfully in [12], where an holographic model
without explicit chiral symmetry breaking was considered, and which can reproduce the hadronic
spectrum for spin 1/2 and 3/2 baryons with an arbitrary number of constituents. As is known from
the spin 1/2 case, a dilaton field can not improve hard wall models, because this field is factorized
from the equation that gives us the spectra [13, 12]. Other work related to mass varying in the bulk
can be found in papers such as [14, 15, 16, 17].

In this talk we consider an AdS / QCD model that takes into account effects of chiral symmetry
breaking, with z dependent scalar mode masses. We show that it is possible to build a model that
incorporates both spontaneous and explicit chiral symmetry breaking, and which includes variable
masses. In the model presented, for a certain set of parameters, we obtain that the lightest scalar
meson has a mass lower that of the Pion, contradicting some properties of QCD [18, 19], but
fortunately this problem is not present in all cases, so the model discussed here can be considered
as a complementary alternative treatment for this problem, different to the effort developed in
[6, 7, 8], where the authors try to improve soft wall models by deforming the dilaton and/or the
metrics.

The work consists of the following parts. Section II is a brief description of the model, where
we write down the equations that describe the vev and the scalar, vector and axial vector mesons
in the AdS side. In III we obtain a variable mass for the scalar modes. In section IV we discuss
how to fix the parameters involved in this model, in order to obtain in section V the spectra with
the parameters of the previous section. Finally, section VI is dedicated to expose the conclusions
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Table 1: Field content and dictionary of the model.

4D : O(x) 5D : Φ(x,z) p ∆ m2
5R2

qLγµtaqL Aa
Lµ

1 3 0
qRγµtaqR Aa

Rµ
1 3 0

qα
R qβ

L
1
z X 0 3+δ m2

5(z)R
2

of this work.

2. Model

The dimensions of field theory operators involved in the AdS / CFT correspondence are related
to the conformal dimension of dual modes in the AdS side. In general, operator in a theory like
QCD have anomalous dimensions that run with the energy scale, and the conformal dimensions
for the AdS modes depend on the mass of this modes. If we consider the part of the AdS / CFT
dictionary that say that the holographical coordinate z is related to energy, the relationship between
dimension for operators in the field theory and conformal dimension for gravity modes tell us that
the mass for modes propagating inside the bulk must be z dependent.

We consider the most usual version of soft wall AdS / QCD models, with the notation used in
[6], which takes into account an 5d AdS background defined by

ds2 =
R2

z2 (ηµνdxµdxν +dz2), (2.1)

where R is the AdS radius, the Minkowsky metric is ηµν = diag(−1,+1,+1,+1) and z is a holo-
graphical coordinate defined in 0≤ z < ∞. Here we consider a usual quadratic dilaton

φ(z) = λ
2z2. (2.2)

To describe chiral symmetry breaking in the mesonic sector in the 5d AdS side, the action considers
SU(2)L×SU(2)R gauge fields and a scalar field X. Such action is given by

S5 =−
∫

d5x
√
−ge−φ(z)Tr

[
|DX |2 +m2

X(z)|X |2 (2.3)

+
1

4g2
5
(F2

L +F2
R )

]
. (2.4)

This action shows explicitly that the scalar modes masses are z dependent, which is the feature that
distinguishes this model from other AdS / QCD models with chiral symmetry breaking.

In Table I the fields included in model are shown and also his relationship with modes prop-
agating in the bulk, according to the AdS / CFT dictionary. Notice that the operator qq has an
anomalous dimension (δ ), which in turn produces a mass that depends on z for the modes dual to
this operator, in agreement with [11, 12].

Starting from (2.4), the equations that describe the vev and the scalar, vector and axial vector
mesons are

− z2
∂

2
z v(z)+ z(3+2λ

2z2)∂zv(z)+m2
X(z)R

2v(z) = 0. (2.5)
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−∂
2
z Sn(z)+

(
3
z
+2λ

2z
)

∂zSn(z)+
m2

X(z)R
2

z2 Sn(z) = M2
S Sn(z), (2.6)

−∂
2
z Vn(z)+

(
1
z
+2λ

2z
)

∂zVn(z) = M2
VVn(z), (2.7)

−∂
2
z An(z)+

(
1
z
+2λ

2z
)

∂zAn(z)+
R2g2

5v2(z)
z2 An(z) = M2

AAn(z). (2.8)

Before discussing the phenomenology of this model, it is necessary to know the precise form
of m2

X(z), something we will now consider.

3. Obtaining an expression for m2
X(z)
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Figure 1: ***The upper graph shows v(z)R, while in the lower graph the scalar modes masses as functions
of z are given. All plots have been obtained with λ = 0.4GeV , and Ω values used appear in each plot.

The mass for scalar modes in the bulk, m2
X(z), is obtained starting from (2.5), although know-

ing first the function v(z). The behavior of this function is known in two limits.
First we consider the usual limit z→ 0, according to which

v(z→ 0) = αz+β z3, (3.1)

where the α and β coefficient are associated with the quark mass and chiral condensate respec-
tively.

The other limit in which we know the behavior of v(z) is when z→∞, and therefore we require
that (2.8) gives a Regge-like in this limit. In order to expose this clearly, we change (2.8) using

An(z) = exp
(

1
2

∫ (1
z
+2λ

2z
)

dz
)

an(z). (3.2)

This transformation converts our equation into a Schrödinger like equation, with a potential

VA(z) =
3

4z2 +λ
4z2 +

R2g2
5v2(z)
z2 . (3.3)
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As is well known, soft wall models must reproduce spectra with Regge behavior when z→∞,
so the potential in this limit must look like

V (z) = a+bz2 +
c
z2 , (3.4)

and therefore v(z→∞) can be: constant, linear or quadratic in z. In this work we only consider the
first possibility, leaving for future work a more general discussion that considers all cases.

Knowing the behavior of v(z) both for z→ 0 as in z→ ∞, we choose an ansatz capable to
reproduce both limits,

v(z) =
Ω

R
arctan(Az+Bz3). (3.5)

Using this form for v(z) in (2.5) allows us to get an expression for m2
X(z). Both v(z) and mX(z)

are shown in FIG 1 to different values for Ω, where this is an arbitrary parameter and parameters A
and B are related to quarks mass and chiral condensate and his values are fixed according to next
section.

4. Parameter setting

The first parameter that we fix is λ , using data from the spectrum. Specifically we consider a
fixed value for the Regge slope, which in this kind of models with quadratic dilaton is 4λ 2. In [6]
a Regge slope is fixed through radial excitations with n ≥ 3, but in our case, since the model has
Regge behavior in the vector meson sector, we use a value fixed by the lightest vector meson, so
finally we choose λ = 0.400GeV that allows us to obtain correct value masses for vector mesons.

Table 2: Scalar meson spectra in MeV. Values for Ω are: (a) Ω = 0.1, (b) Ω = 0.5 y (c) Ω = 2. As you can
see in FIG 2, for each Ω there are two possible values for mq. All masses are in MeV.

n f0(Exp) f0(a) f0(a) f0(b) f0(b) f0(c) f0(c) f0(Re f .[6])
mq = 2.8 mq = 74.3 mq = 7.9 mq = 72.3 mq = 7.3 mq = 73.1

0 550+250
−150 162 711 130 506 84 466 799

1 980±10 1151 1179 1130 1036 1020 932 1184
2 1350±150 1416 1444 1411 1357 1354 1253 1466
3 1505±6 1635 1659 1632 1597 1595 1511 1699
4 1724±7 1823 1846 1823 1799 1796 1729 1903
5 1992±16 1999 2014 1995 1976 1974 1918 2087
6 2103±8 2156 2169 2152 2137 2135 2089 2257
7 2314±25 2303 2314 2299 2286 2284 2244 2414

The remaining parameters can be fixed using (3.5), the expression chosen to describe the vev,
which has the limits

v(z→ 0) =
Ω

R
Az+

Ω

R

(
−A3

3
+B
)

z3 +O(z5), (4.1)

v(z→ ∞) =
Ωπ

2R
+O(z−3). (4.2)
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Comparing (4.1) with the value established in the AdS / CFT dictionary, with the notation used
in [6]

v(z→ 0) =
mqζ

R
z+

σ

Rζ
z3, (4.3)

The parameter ζ was introduced in [11] to get the right normalization, and his value is ζ =√
3/(2π). With this, the A and B parameters are given by

A =

√
3

2πΩ
mq (4.4)

and

B =
2π√
3Ω

σ +
3
√

3
8π3Ω3 m3

q, (4.5)

where mq is the quark mass and σ is the chiral condensate.
In order to finish the model description, it is necessary to specify the values for mq and σ ,

which are related by the GOR m2
π f 2

π = 2mqσ , and therefore we need to fix only one of them. In
this case we use mπ = 140MeV and fπ = 92MeV , and we fix the quark mass using

f 2
π =− 1

g2
5

lim
ε→0

∂zA0(0,z)
z

|z=ε , (4.6)

where A0(0,z) is solution of (2.8), with M2
A = 0, and the boundary conditions used are A0(0,0) = 1

and ∂zA0(0,z→ ∞) = 0.
***As you can see in (2.8), A0(0,z) equation as a term that depend on mq, so using (4.6) we

get fπ(mq). This appear in FIG 2, and this show us for each Ω value, we have two possible quark
masses. For Ω= 0.1 we found mq = 2.8MeV and mq = 74.3MeV ; for Ω= 0.5 we get mq = 7.9MeV
and mq = 72.3MeV and when we use Ω = 2 is obtained mq = 7.3MeV and mq = 73.1MeV .

0.00 0.02 0.04 0.06 0.08
0.00

0.05

0.10

0.15

0.20

mq

f Π
Hm

q
L

Figure 2: The plot show the pion decay constant as mq function according to (4.6). The horizontal line
correspond to fπ = 92MeV .

5. Mesonic spectrum

Having fixed the parameters of the model, we can calculate masses for some mesons, which
correspond to eigenvalues in the equations (2.6), (2.7) and (2.8). In this set of equations, only (2.7)
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can be solved analytically. For this reason we prefer to change all equations into Schrödinger like
ones, and later solve numerically (2.6) and (2.8) using a MATHEMATICA code called schroedinger.nb
[20], which was adapted to our potentials.

Table 3: Vector mesons spectra in MeV.

n ρ(Exp) ρ(Model) ρ(Re f .[6])
0 775.5±1 800 475
1 1282±37 1131 1129
2 1465±25 1386 1529
3 1720±20 1600 1674
4 1909±30 1789 1884
5 2149±17 1960 2072
6 2265±40 2117 2243

Table 4: Axial vector mesons spectra in MeV. Values for Ω are: (a) Ω = 0.1, (b) Ω = 0.5 and (c) Ω = 2.
The values for mq in the table. All masses are in MeV.

n a1(Exp) a1(a) a1(a) a1(b) a1(b) a1(c) a1(c) a1(Re f .[6])
mq = 2.8 mq = 74.3 mq = 7.9 mq = 72.3 mq = 7.3 mq = 73.1

0 1230±40 864 825 1262 888 1495 909 1185
1 1647±22 1170 1144 1388 1231 2331 1325 1591
2 1930+39

−70 1412 1394 1579 1468 2544 1649 1900
3 2096±122 1619 1606 1755 1668 2660 1910 2101
4 2270+55

−40 1803 1794 1917 1846 2770 2117 2279

6. Conclusions

The possibility of incorporating chiral symmetry breaking in soft wall models, introducing a
dependence on the holographical coordinate in the mass for models propagating inside the bulk,
was studied. This idea could be considered as a complement to other mechanisms that try to solve
this problem introducing changes in the dilaton field, changes in the metric, or introducing a cubic
or quartic term for scalars in the action [6, 7, 8, 9].

The model considered here uses a usual quadratic dilaton and a AdS metric, and considers an
expression for v(z) that it is able to reproduce the expected behavior in the UV and IR limits. For
certain choice of parameters we obtain that the mass of the lightest scalar meson is less than the
mass of the Pion, contradicting a well-established QCD theorem. Fortunately does not happen in
all cases, and then it is possible to obtain mesonic masses that in general are in good agreement
with data.

In light of the results presented in this paper, we think that the introduction of a mass that varies
with z inside the bulk can be considered as a complementary alternative in order to build AdS / QCD
models that take into account effects of chiral symmetry breaking. In some cases the spectra that we
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get is poor, so a z dependent mass like we are presenting here clearly cannot solve all problems, but
anyway we think is an interesting complementary alternative, because z dependent masses can be
associated to dual modes of operators with anomalous dimensions, allowing the introduction into
this kind of models of an important QCD quantity, which is usually not considered when people
build AdS / QCD models.
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