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In Euclidean lattice simulations, using the operator product expansion tlestiomoments
of the meson and nucleon structure functions have been evaluated3}14]2,0n the other side,
Loop-loop correlation functions of tilted Wegner-Wilson loops computed iclifean space [6, 5]
can be related to the gluon distribution function of a color dipole which consisisstatic quark
and antiquark pair connected by a Schwinger string. Alternatively, proaph based on light cone
dynamics [8, 7] refers to constituents moving along the light cone, as staghky the picture of
Feynman scaling (as zeroth approximation). In the light cone approactothperturbative QCD
vacuum structure is hard to achieve within the Fock representation didide acting on a trivial
vacuum. As we will demonstrate, the confining nontrivial QCD vacuum isréid to generate the
correct interaction of colored constituents moving along light like trajectories

Therefore we have developed a near-light-cone (nlc) approachichwie exploit the lattice
formulation given forSU(2) gluodynamics, benefitting from simplifications emerging in the light
cone limit. In Ref. [9] we have constructed a ground state wave functafrthe nlc Hamiltonian
which is simpler than the ground state in equal-time theory. In Ref. [10] we batlined the
formalism to determine the gluon distribution function of a color dipole with this igdostate
wave functional. The present letter gives the main new results which daeskiollowing this
approach.

The gluon structure functiog(xg) is the probability that a gluon carries a fractirg of the
longitudinal momentum of the fast moving hadronic target. In light cone doatek, it is given by
the Fourier transform of the matrix element of the two-point oper@fgiz ,Z, ;0,Z,) of longitu-
dinally separated gluon field strength operators in a hadron |siate, 0, )):

— 11 ® 2 —iXg p-Z~ 1 A — . =2
Oxe) = 3 57, [ 07 d2ieoP = 2 ((p_.0,)|Ge(z 2:50.2))[(p-.0.)) . (M)
with
2
Gie(z,2150,21) = ¥ FA(Z7,20)Sh(2,21: 0,21 )F(0,2)). )

k=1

The hadronh(p_,0,)) is centered in transversal configuration space at= 0, and carries a
longitudinal momentunp_. The index “c” indicates that the connected matrix element has to be
taken. The Schwinger Iinﬁgb(z*,zl ; 0,Z,) in the adjoint representation and running along a light
like path is inserted between the gluon field strength operd8€0,z, ) andF3 (z",Z,). The
importance of the Schwinger lines along the light cone has been demonsrgteih the loop-
loop correlation model where hadron-hadron scattering cross-sgetiertalculated from Wegner-
Wilson loop correlation functions [6]. In another language, the eikohakps arising from the
strings along the - direction describe “final state” interaction effects which distinguish siirec
functions from parton probabilities [11].

We are using near-light-cone coordinates which allow us to implement lighttdreantization
as a limit of equal time quantization. The definition of the temporal nlc coordixfateontains
an additional external parametgrwhich facilitates a smooth interpolation between equal time
quantization § = 1 , x* = x%) and light cone quantizatiom(=0 , x" = 1/2(x° 4+ x3)). The
definitions are:

x*:%[(l+r)2)x0+(l—n2)x3] X = [xo—xﬂ .
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Then — 0 limit can be interpreted as the infinite momentum frame limit in which the partons of
the color dipole move with infinite momentum. The use of nlc coordinates has thatadge that
no quantum constraint equations have to be solved.

In the SU(2) lattice formulation we have two transversal gauge fiélgl€j = 1,2) and one
longitudinal oneA_ (j = —) that are represented by the corresponding link mattigeg). TheA,
component of the gauge field is set equal to zero. As a result one h&atrss-law constraining
the entire Hilbert space to the physical sector of gauge invariant statess gllion dynamics is
determined by the Hamiltonian which has been derived in Ref. [9]. It semts the gluon energy
density on the lattice. The QCD coupling constant entess as4/g* in the SU(2) case,

Heftlat = N 1N2 & \/—Z{ z A(R)? + ;)\ Tr{1—Up2(X)]
2
+3 % % [ng(z)2+ A <Tr[% (u_k(z)—uTk(z))D ] . 3)

Here,U1, are purely transversal plaquettes, &hg are longitudinal-transversal plaquettes.

The Hamiltonian contains the chromo-electric field strength operBit&(e¢§, which are canon-
ically conjugate to the linkd;(X). They obey commutation relations which follow from the corre-
sponding continuum relations,

M), Uj(9)] = (6°/2) Ui(X) &y &, - (4)

The constanfj in Eq. (3) is the produdf = n - & of the near-light-cone parametgrand an even-
tual anisotropy parametér= a_/a, , the ratio of lattice spacings in longitudinal and transverse
directions. If one chooseg = 1 and variest, one simulates an anisotropic equal time theory.
In the limit & — 0 one ends up with a system, which is contracted in the longitudinal direction.
Verlinde and Verlinde [12] and Arefeva [13] have advocated suchitizdato describe high en-
ergy scattering. A longitudinally contracted system means that even the minimalnzobszome
high in longitudinal direction. The limi€ — O leads to the same physics as the light cone limit
n — O with isotropic lattice spacings in longitudinal and transverse directiontindases the nic
Hamiltonian is dominated by the terms proportional {@j involving transverse chromo-electric
and chromo-magnetic fields. For a nlc-Hamiltonian formulation, the two-poietadr in Eq. (2)
has to be replaced by

2
Gie(z,2,;0,2,) = Z «(Z,20) Dy(z7,2.;0,2,)M E(o,zl)+{kaHng}). )

I\.)Il—‘

In Ref. [9] we have determined a variational gluonic ground state wawaifinal|Wp) which
consists of a product of single-plaguette wave functionals with two vargtioaptimized param-
eterspo = po(A, ) anddp = &o(A, 1),

|Wo) = WolU] [0) = vNwe'V |0) ,

2
z{z +60Tr[ulz<%>]} :
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Figure 1. The generalized Wegner-Wilson loop generating the matgrment between the color dipole
states. Quarl and antiquark) are connected biytransversal links. Only one transversal direction is shown
The insertion represents the gluonic two-point operatdin an electric and a magnetic field operator.

Ny is a normalization factor. Here, the sté represents the trivial ground state which is annihi-
lated by the field momentd(X) conjugate to the links,

ME(X) |0) = 0 and (0] NZ(X) =0 forVx k,a. (6)

We have optimized this ansatz and extrapolated the paranmgtésto the light cong} — 0 (see
Ref. [9]).

Since the nlc Hamiltonian in Eqg. (3) contains only gluon fields, we cauieoive a full
hadronic wave function from this Hamiltonian. We have to make a model takiegofahe gluon
structure alone while treating the quarks schematically. Our model repsesdipole localized in
transversal configuration space at a fixed center of mass poﬁﬂi@nﬁ. The distancel, between
quark and antiquark is bridged by a Schwinger line along some%atim the transversal plane.
The in and out dipole states form a Wegner-Wilson loop in the eikonal appation as sketched
in Fig. 1.

The longitudinal lattice momenta must hdold (integer) multiples of 2r/N_, with 0 < n <
N_/2— 1, since the longitudinal light cone momentum for an on shell particle is alpyagiive.
The momentunp_ of the target is chosen (in lattice units) as the largest momentum in order to
allow for the maximum resolution in the gluon distribution function [14]. The lordiital lattice
gluon moment#hen have the resolution

_2n N, Apr 2

—_E(Z )7 p_ _N_—Z. (7)

In order to have a high resolution, the extension of the lattice in the longitudiireaition has to be
very large.

We impose the quark dynamics of the color dipole externally. Since the totedrnémhgi-
tudinal momentum is given by the sum of the momenta of its constituents (gugitkans), the
typical mean gluon momentum is taken from experiment. For a rough qualitatmparison, we
use theMRST-parameterization [15] of the protd®lJ(3) gluon distribution function at the input
scaleQ? ~ 1m?/a? = 1.5Ge\? corresponding td ~ 10, and assign a mean momentum fraction
p> = 0.38p_ to the gluon system of th8U(2) color dipole.

The gluon distribution function for a one-link dipole gi(p?; pS) with total gluonic mo-
mentump® has been computed on lattices with = 20, 30, 50, and 100 sites in the longitudinal
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p99,(pY;p5=0.38p.)

Figure 2: Gluon distribution functionp® g1(p? ; p° = 0.38p_) for a single transversal linky = 1. The
dependence on the longitudinal lattice site is shown for a lattice coupling = 4/g* = 10 (see Eq.(4)).
The average gluon momentufp® ) = pS was input and adjusted tog) p_ = 0.38 p_ (see text).

direction. Fig. 2 demonstrates the effect of increasing the number of |aligtiuattice sites, i.e.
approaching the infinite volume limit. Scaling far= 10 seems to be obeyed for longitudinal
lattice extensions larger tha. = 50. Realistic lattice simulations need quite large longitudinal
lattice sizes. The smearing of the distribution function is due to the gluon dynamimgporated
in the Wegner-Wilson loop expectation value. Thus, the area law behdwioe ®Vegner-Wilson
loop yields a non-trivial gluon wave function which broadens the distribution

For largerA, i.e. smaller QCD gauge couplimg, the peak in the one-link distribution function
becomes narrower. In the extreme weak coupling limit, when the link reducesitgle gluon,
the gluon distribution function becomes totally sharp. On the other handirémgscoupling one
has a broad momentum distribution peaked aropifid

The one-link dipole gluon distribution is the basic building block from which thetipia
link dipole gluon distribution function of a hadron can be constructed. Theabhadronic state
arises from a superposition of multiple link configurations. Let the wiggly gs$g (c.f. Fig. 1)
connecting the quark and antiquark have a fixed number of transvietsakince all the dipole
configurations with fixed transversal lengtthave the same energy. Then one rotates the hadron
in the transversal plane by summing over randomly chosen c@fvem order to project this state
on angular momenturd, = 0. From the random walk follows that foklinks , the hadron has an
average radius squaréﬂiﬁL proportional ton: Hence, the area of the hadron scales with the number
of links:

(RE)=nat/2. ®)

Due to smalldy in the light cone limit, the ground state wave functional allows for ordinaryngtro
coupling methods. This implies especially that one needs incoming and outgatieg sharing the
same transversal links connecting the quark and antiquark. Ther#fergluon distribution can
be obtained for a special string elongated along only one of the traabeses (c.f. Fig. 1).

The computation of the n-link gluon distribution functighis done in analogy to the compu-
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Figure 3: Qualitative comparison of the gluon distribution functigggs,(xs; p°) for n = 4 transversal
SU(2) links with the MRSTgluon distribution function of a proton &> = 1.5 Ge\?. The average gluon
momentum was taken as input for the lattice calculation bin a 1000 lattice at gauge coupling= 10.

tation of the single link gluon distribution. In strong coupling the total loop fazés; therefore
the n-link distribution function is given by the product of a splitting functiBn.,,_1 multiplying
the gluon distribution function witlm — 1 links. In the emerging recursion relation all possible
intermediate momenta of the substring are summed over:

o P ,
an(p%; p°) = Sz On-1(P%; P2") Prona (P2, ) 9)
R

The splitting functiorP, ._1(p°, p°’) denotes the probability that a string witliransversal links
and total momentunp® splits into a string wittn — 1 transversal links and total momentya’

and is given in Ref. [10]. The initial condition for the recursion relation @y is given by the one-
link dipole functiongs (p? ; p®). The computation is purely arithmetic for sm&l, and we can use

a large longitudinal lattice withN_ = 1000 lattice sites. If one increases the number of transversal
links, the gluons have access to a larger region in phase space due péttimgunction P, .1

in Eq. (9). Therefore the total gluon momentum will be partitioned among moomgliHence, it
becomes more likely to find a gluon with a small fraction of the total momentum.

In Fig. 3, we show the theoretical gluon structure function far-a4 SU(2) link dipole as a
function of the gluon fractional momentuxg = p? /p_. To have a rough qualitative comparison,
we also show théMRSTgluon distribution function aQ? = 1.5GeV? which is for real protons
andSU(3). As before, the first moment of the lattice gluon distribution function has fized
in this figure to the valuéxg) = 0.38 atQ? = 1.5Ge\?. We choose four links to be consistent
with the size of a proton and the relatidﬁi) = nai/z and a transversal lattice spacingaof~
0.65 fm. The lattice gluon distribution function for a color dipole shows a similaabien as the
phenomenologicd¥iRST-gluon distribution function for a proton.

The model presented here also shows xaaf(xg) for the gluon at smalbkg becomes propor-
tional to the hadronic siz&2 . This coincides with the empirical soft Pomeron behavior of hadronic
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cross sections. To evolve the structure function with increasing resolQfiamd with decreasing
xg in Hamiltonian lattice QCD, one needs a more sophisticated ground state watetah re-
specting scaling with the lattice spacing.
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