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We analyze the equal-time Bethe-Salpeter quark wave functions of the pion in various models. We

discuss how the quenched lattice QCD results with delocalized pion interpolators can be identified

with the coarse grained wave functions, typical of low-energy effective models. Actually, we find

that one-loop chiral quark models predict that pseudoscalar and tensor wave functions have the

same shape, while the axial component is more extended. These facts are accurately confirmed by

the lattice. We also show how the transversity information,relevant for the light-cone physics, can

be straightforwardly obtained from the equal-time rest-frame lattice calculations. This remarkable

relation provides a way to extract, for instance, the equal-time holographic wave functions and

compare them, quite favorably, to the lattice calculations.
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1. Introduction

Hadronic wave functions encode important information on bound states in strong-interaction
physics; in particular, they provide the amplitude for a composite hadron to have quarks in a
given momentum state or, equivalently, at a certain space-time distance. Heavy quarks obey non-
relativistic quantum mechanics and conserve particle number. While our understanding and intu-
ition is based on wave functions, as a matter of principle the wave functions cannot be directly
measured experimentally. One must instead resort to form factors, decaywidths, or momentum
distributions. Moreover, for light quark systems particle creation may occur, demanding a field-
theoretic framework where further complications arise. Relativistic invariance requires that one
uses the conventional Bethe-Salpeter (BS) amplitudes with a fixed number ofthe quark field oper-
ators, a reminiscent of the approximated parton picture point of view, emphasized by the light-cone
approaches [1]. Color gauge invariance requires additional inclusionof the link operators [2].

For the pion, the spontaneously broken chiral symmetry is a basic dynamicalingredient in
the determination of its nonperturbative quark structure. It appears via the pertinent axial Ward-
Takahashi identities [3]. These important constraints are implemented in relativistic field-theoretic
chiral quark models, such as the Nambu–Jona-Lasinio (NJL) model (fora review see, e.g., [4]).
The regularization, introducing the physical cut-off, needs to be carefully handled not to spoil the
relativistic, gauge, and chiral symmetries.

On the other hand, lattice QCD solves the bound state problem in a fundamentalway. It is
thus possible to make a first-principle nonperturbative determination of the wave functions, but
at the expense of breaking the continuum symmetries, such as the Lorentz invariance and, quite
often, chiral symmetry, due to the finite lattice spacing. The axial Ward-Takahashi identities can be
exactly implemented on the discrete Euclidean lattice as shown by Ginsparg and Wilson [5] (see
Ref. [6] for a recent practical implementation), enabling realistically small pion masses.

In the present contribution we show the analysis of the pion wave functionsfrom the quenched
lattice QCD [7] and make the comparison to various hadronic models. In spite ofthe very dissim-
ilar appearance and nature of these approaches, we will provide the conditions under which this
comparison may be undertaken. We also address in more detail the light-coneissues with the help
of the transversity relations.

2. Bethe-Salpeter Amplitudes

The BS vertex or wave function of the pion is given by

χp(k) = −i
∫

d4xe−ik·x〈0|T {q(x)q̄(0)}|πa(p)〉, (2.1)

whereq(x) are spinor field operators carrying flavor and color, and|πa(p)〉 is the pion state with
the Cartesian isospin indexa and the on-shell four-momentump, p2 = m2

π . While chiral quark
model calculations are naturally formulated in the momentum space, the basic objects in Euclidean
lattice calculations are the point-to-point correlation functions. These quantities are gauge and
renormalization-group invariant at all Euclidean times, which basically correspond to off-shell pro-
cesses. At large Euclidean times only the on-shell states contribute to the correlation functions, as
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well as the off-shell violations of the gauge invariance disappear. Inverting the Fourier transforma-
tion we get (in the isospin limit ofmu = md)

〈0|T {q(x)q̄(0)}|πa(q)〉 =
τa

fπ
γ5[ΨP + /qΨA + iσ µνqµxνΨT ], (2.2)

where the wave functionsΨa, a = P,A,T, depend on the Lorentz-invariant variablesx2, x ·q, and
q2 = m2

π . The quantitiesΨa are vertex functions in the BS equation, and as such are finite and
undergox-independentmultiplicativerenormalization. Thus, the ratiosΨa(x)/Ψa(0) become cut-
off independent, as the cut-off is removed, which on the lattice meansa→ 0.

The definition of Eq. (2.2) is completely satisfactory for chiral quark models. In QCD, how-
ever, it is only gauge-invariant in the fixed-point Fock-Schwinger gauge,xµAµ(x) = 0, where the
standard derivatives,∂ µ , and the covariant derivatives,Dµ = ∂ µ + igAµ , coincide. On the lattice
the gauge fixing has the problem of the Gribov copies, as there is no completegauge fixing. On the
other hand, Elizur’s theorem prevents non-vanishing vacuum expectation values of gauge variant
operators in the physical Fock space.

Non-gauge invariant operators can be made gauge invariant by joining them with a link oper-
ator, however, as a result the path-dependence sets in. Furthermore,gluons carry momentum in the
pion and different gauge-invariant definitions yield different results (see Ref. [8] for a discussion
on various possibilities). For definiteness, we choose a straight-line path and undertake asmearing
procedure. This delocalization improves the signal-to-noise ratio for the measured hadron corre-
lators, as the interpolating operators have a larger overlap with the desiredstate. Local operators,
in contrast, do not take into account the spatial extension of the hadron. The usefulness of the
smearing process lies also in the fact that the overall thickness of the flux tube in the probe is con-
trolled by the number of the smearing steps. In addition, the method is computationally simple.
The resultingfat link also reduces the high-energy fluctuations and the path dependence, such that
we deal with a coarse-grained wave function. The procedure naturallyfinds its counterpart in the
low-energy effective chiral quark models. In a previous work [7] thequenched lattice calculations
of the pion have been worked out along these lines. The quenched approximation contains all the
leading-Nc, and hence the ¯qq, Fock state components. Thus we expect that quenched calculations
describe the large-Nc motivated models1.

3. Transversity relations

The relativistically invariant BS amplitude has the representation

〈0|T {q(x)q̄(0)}|πa(q)〉 = iγ5τa

∫ 1

0
dαe−i(2α−1)q·x

× [−Ψ̃P(α ,x2)+ /qΨ̃A(α ,x2)−2iσ µνqµxνΨ̃T(α ,x2)], (3.1)

whereα is the Feynman parameter. As a matter of principle, all scalars such asΨa in Eq. (2.2) de-
pend on the kinematic variablesx2, x·q, andq2, thus we are free to choose any form of kinematics.

1The quenched lattice calculations also contain a piece subleading inNc, which is actually suppressed for heavy
quarks; pion loops are 1/Nc-suppressed, although not all of the 1/Nc-contributions originate from the pion loops [9].
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In therest-framekinematics we havex0 = 0 and(q0,q) = (mπ ,0), whencex2 = −x2, x·q = 0, and
q2 = m2

π . On the other hand, in the infinite-momentum-frame kinematics(q0,q) = (
√

m2
π + p2

z, pz),
with pz → ∞. Thus on the light-cone surface,x0 = z, one hasx2 = −x2

T , andx ·q→ 0.
The Lorentz invariance allows us to relate the rest-frame calculation to the transverse-coordinate

dependence in the light-cone wave functions. Simply, by comparing Eqs. (2.2) and (3.1) we find

Ψa(x
2,x.q) =

∫ 1

0
dαΨ̃a(α ,x2)e−iq.x(2α−1). (3.2)

We may identify the Feynman parameterα with the Bjorkenx-variable,xBj ≡ α . Then, for the
chosen kinematicsq+x− = q ·x = 0, we haveΨET

a (−r2,0) =
∫ 1

0 dxBjΨLC
a (xBj ,−r2), where ET and

LC denote the equal-time, and light-cone wave functions, respectively. Inthe argument ofΨET

one takesr2 = x2, the distance squared, while in the argument ofΨLC we need to user2 = x2
T , the

transversedistance squared. Therefore

ΨET
a (−r2,0) =

∫ 1

0
dxBj ΨLC

a (xBj ,−x2
T)

∣∣
xT=r . (3.3)

That way the connection between the ET and LC wave functions has been established2.
Although generating the autonomous connection between LC and ET wave functions seems at

first glance hopeless [10], a similar transversity relation has recently been deduced for scalar parti-
cles. Another transversity property for the Generalized Parton Distributions (GPDs) was suggested
for the nucleon [11] and the pion [12], allowing a frame-independent definition of probability (un-
like the more conventional Breit-frame definition). In the case of the pion it reads

PLC(b) =
∫ 1

0
dxq(x,b) =

∫
d2q⊥
(2π)2eiq⊥·bFV(−q2

⊥) = PET(r)|r=b≡|b| (3.4)

whereq(x,b) is the off-forward diagonal GPD andFV(t) is the pion form factor. In the phenomeno-
logically successful Vector Meson Dominance (VMD), whereFV(t) = M2

V/(M2
V − t), one gets

PET(r) = M2
VK0(rMV)/(2π) ∼ e−MV r/r

1
2 . (3.5)

Besides these relations, it would also be useful to verify the ET-LC transversity connection directly
on the lattice. While there exist transverse lattice calculations [13] (see [14]for a review), their
focus is placed on the Distribution Amplitude,Ψ(α ,0) = ϕ(α), leaving out thex⊥ dependence.

4. Chiral Quark Models vs Lattice

We evaluate the correlation function of Eq. (2.2) in a chiral quark model (for a review see,
e.g., [4]). Disregarding for the moment the regularization, an instructive way to determine the
pion wave function in a chiral quark model is by exploiting the axial Ward-Takahashi identity.
It relates the quark propagator,S(p), and the vertex function corresponding to the axial current,
Jµ,a

A (x) = 1
2q̄(x)γµγ5τaq(x), with the irreducible vertexΓµ,a

A (p+q, p):

S(p+q)−1γ5
1
2

τa + γ5
1
2

τaS(p)−1 = qµΓµ,a
A (p+q, p). (4.1)

2Note that we keep only the ¯qqcomponents of the BS amplitude, thus we do not account for the possible emergence
of the higher Fock-state components, pertinent to the dynamical nature of the boost.
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Figure 1: The components of the rest-frame equal-time pion wave function, normalized to unity at the
origin, Ψa(r)/Ψa(0), for S, A, andT channels, evaluated in the NJL model atM = gπqq fπ = 300 MeV,
and compared to the quenched lattice data [7]. The displayedpoints of the lattice data are atmπ = 345 and
575 MeV, while the NJL model calculation includes also the case of the physical pion mass.

In the NJL model, the spontaneous breaking of the chiral symmetry generates a constituent quark
mass,M, given by the so-calledgap equation. As the result,S(p) = 1/( /p−M), such that

Γµ,a
A (p+q, p) =

τa

2
γ5

[
γµ − qµ

q2

2M
fπ

]
(4.2)

The pole atq2 = 0 indicates the Goldstone boson nature of the pion. The pion wave function is
extracted from the pion pole as an unamputated vertex function,

χa
q(k) =

i
/k+ /q−M

(
M
fπ

γ5τa

)
i

/k−M
, (4.3)

where the Goldberger-Treiman relation at the quark level,gπqq = M/ fπ , can be read off. With the
Feynman trick, the result becomes particularly simple in the chiral limitq2 = m2

π → 0, yielding

Ψ̃P(α ,x2) = M
[
−2(2α −1)∂x2 +∂ µ∂µ +M2]∂M2∆(M,x),

Ψ̃A(α ,x2) = M2∂M2∆(M,x),

Ψ̃T(α ,x2) = −2∂x2∂M2∆(M,x), (4.4)

where we have introduced the free scalar propagator in the coordinate space,

∆(M,x) =
∫

d4p
(2π)4

eip·x

p2−M2 =
MK1(M

√
−x2)

4π2
√
−x2

. (4.5)

From the previous formulas we find (formπ = 0) the relations

ΨP(r) = 2ΨT(r) =
gπqqNcM

π2r
K1(Mr)

∣∣∣
reg

∼ e−Mr

r3/2
, (4.6)

ΨA(r) =
gπqqMNc

2π2 K0(Mr)
∣∣∣
reg

∼ e−Mr

r1/2
,

whereK0 andK1 are the modified Bessel functions and “reg” means a regulator. The asymptotic
behavior atr → ∞ is independent of the regulator and implies a longer tail in theA channel than
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Figure 2: Axial equal-time holographic wave functions, normalized to unity at the origin, for the quark
massesm= 330 MeV (dashed black) andm= 4 MeV (solid red), obtained via the transversity relations and
compared to the lattice calculation withmπ = 575 MeV (boxes) and 345 MeV (circles) [7].

in the P andT channels. The exponential fall-off of the pion wave functions is consistent, up to
a power in r, with the probabilistic estimate in Eq. (3.5) withMV = 2M, M being theconstituent
mass. At short distances as∆(x2,M2) ∼ 1/x2 the results are divergent demanding regularization.

The NJL model with the (twice subtracted) Pauli-Villars (PV) regularization applied to an
observableA amounts to the replacementM2 → M2 +Λ2, followed by the subtraction

A|reg = A(Λ2 = 0)−A(Λ2)+Λ2dA(Λ2)

dΛ2 . (4.7)

Results of the calculation, shown already in [7], are given in Fig. 1. As wesee, the agreement is
excellent. At the farthest lattice point,r = 0.6 fm, the ratior ΨA(r)/ΨP(r) approaches a constant.

The quantitative agreement of the NJL model with the data is not trivial. For instance, in
the Spectral Quark Model (SQM) [15] only qualitative matching is achieved. In this approach the
regularization is introduced by replacing the massM by the “spectral” massω , usinggπqq = ω/ fπ

and integrating overω with a suitable weightρ(ω), which depends on the vector and scalar meson
masses (MV and MS), and also on a specified contour in the complexω-plane. That way, for
instance, VMD of the pion form factor can be built in withM2

V = 24π2 f 2
π /Nc. Formπ = 0 we get

the results

ΨP(r)
ΨP(0)

=
ΨT(r)
ΨT(0)

= e−MSr/2,
ΨA(r)
ΨA(0)

= e−MV r/2
(

1+
MVr

2

)
. (4.8)

Again,ΨA is more extended thanΨP andΨT , due to the presence of an extra power inr. In the case
of SQM we would get good fits of the lattice data forMV/2= 505(30), 520(20), 530(14) MeV for
the subsequent values ofmπ = 345, 475, 575 MeV. A simple quadratic extrapolation inmπ to the
chiral limit yieldsMV/2 = 493(20) MeV, a too high value as compared toMV = mρ = 770 MeV.

5. Holographic wave functions vs lattice

The transversity relations (3.3) can be used to deduce the ET wave functions from the LC wave
functions. As we have shown, ET wave functions can be computed on Euclidean lattices upon a
suitable coarse graining of the gauge link operator. As an example, we takehere the holographic

6
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wave functions inspired by the AdS/CFT correspondence and recently brought in connection with
the LC wave functions [16] as a first approximation to QCD (for a review see e.g. [17]). The
basic idea was to relate the QCD-LC Hamiltonian by using the scaling relation between the two-
dimensional vectorsζ =

√
x(1−x)b (valid for massless quarks) andassumethat the interaction

also depends on this scaling variable. Further elaborated models with finite quark masses are
introduced, assuming the replacementk2

⊥ → k2
⊥+m2 [18]. However, by doing so it is not obvious

whethermcorresponds to the current or constituent mass of the quark. For that reason, massesm=

4 MeV andm= 330 MeV are explored. A full discussion of models is carried out in [19],where
the soft-wall with a positive dilaton background seems phenomenologically preferred. Actually,
besides the good quality of the mass spectrum,M2

nLS= 2πσ(n+L+S/2) with 4κ2 = 2πσ , the pion
arises as a massless mode (corresponding ton = L = S= 0). Unlike the chiral models, this is not
linked to the spontaneous breaking of the chiral symmetry, apparently not manifest in the light-cone
dynamics. Thus, we identify the BS axial component with the holographic wave function [16, 18]

ΨLC
A (b⊥,x) =

Aκ√
π

√
x(1−x)exp

[
−κ2

2
x(1−x)b2

⊥− m2

2κ2x(1−x)

]
. (5.1)

Calculations can be undertaken analytically for massless quarks. Following[18] we fix the pion
weak decay,π+ → µ+ν̄ , and the neutral pion decay,π0 → 2γ, from the conditions

1
2
√

π

∫ 1

0
dxΨLC

A (b⊥,x)|b⊥=0⊥ =
fπ

2
√

3
=

Aκ
16

, 2
√

π
∫ 1

0
dxd2b⊥ ΨLC

A (b⊥,x) =

√
3

fπ
=

4Aπ2

κ

respectively, withfπ = 92.4 MeV. This yieldsA2 = 2/π2 = 0.2 andκ = 4π
√

2/3 fπ = 950 MeV.
Using the transversity relation the ET (holographic) wave function reads (in the massless case,
m= 0)

ΨET
A (r)

ΨET
A (0)

= e−2 f 2
π π2r2/3[

I0(2 f 2
π π2r2/3)− I1(2 f 2

π π2r2/3)
]
= 1−π2 f 2

π r2 +O(r4), (5.2)

where In(z) are the modified Bessel functions. Note that upon the use of the relationM2
V =

24π2 f 2
π /Nc the small-r expansion reproduces the SQM result, Eq. (4.8), exactly. The asymptotic

behavior at large distances has the form

ΨET
A (r)

ΨET
A (0)

=
3
√

3

8 f 3π7/2

(
m
r2 +

1
r3 +O(r−5)

)
e−mr , (5.3)

which displays the exponential fall-off, similarly to the chiral quark models, Eq. (4.6) for NJL and
Eq. (4.8) for SQM, however the powers ofr are different, exhibiting different dynamics in the
models. The parametersA andκ for m= 4 MeV andm= 330 MeV in Eq. (5.1) are taken as in
[18]). As we can see from Fig. 2, the agreement is quite good and the latticedata hardly allow to
discriminate between the mass values except atr = 0.6 fm. Of course, it would be very useful to
pin-down the correct long distance behavior from the lattice above 0.6 fm. The calculation of the
other (higher-twist) components within the holographic approach would alsobe highly desirable.

Our numerical study shows that the lattice data in Fig. 2 can be best fitted withm∼ 100 MeV,
similar to the current quark mass used in the NJL calculation at high values ofmπ . In particular,
for mπ = 575 and 345 MeV we have usedm= 140 and 51 MeV, respectively, in rough agreement
with the Gell-Mann–Oakes–Renner relation−m〈q̄q〉 = f 2

π m2
π . Thus, the interpretation ofm in the

holographic models as thecurrentquark mass seems consistent with this comparison.
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6. Conclusions

The presented calculations show that the Euclidean lattices can be successfully used to coarse
grain the wave function over short-distance scales, where the gluon degrees of freedom are inte-
grated out. A direct comparison to wave functions from various hadronicmodels not only becomes
meaningful, but in some cases very successful. A quite unexpected result concerns the utility of
our calculations to determine the transversity information (the dependence onthe transverse co-
ordinates), relevant for the light-cone physics; the infinite-momentum framepion wave functions,
integrated over the Bjorken-x, coincide in the impact-parameter space with the equal-time rest-
frame wave functions. This relation provides a way of checking the wave functions for models
genuinely formulated in the LC variables. As an example, we have carried out this analysis for
holographic models.

We thank Sasa Prelovsek and Luka Santelj for their collaboration in the latticecalculation [7].
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