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1. Introduction

At low and intermediate masses, the electromagnetic emissivities are dominated by thermal

emissions. Thermalization at RHIC has been established using both statistical analysis (chemi-

cal equilibration) [1] and flow measurements (thermal equilibration) [2]. PHENIX has reported

dilepton emissivities all the way to the Dalitz region [3], and more recently extrapolated photon

rates [3]. In so far, the electron emissivities in the intermediate mass region have defied most

theoretical understanding.

In this talk, I will give a brief overview of our current theoretical understanding of the electro-

magnetic emissivities by focusing on the photon rates. I will quote the electronic rates. In section

2, the hadronic photon rates are worked out in terms of the chiral reduction formulae tying the rate

to vacuum correlation functions. The hadronic rates overun the partonic rates for a broad range of

photon energies. In section 3, we rely on a hydrodynamical evolution to assess the electromagnetic

emissivities for 3 distinct experiments to underline the consistency of our approach. Our summary

is in section 4.

2. Hadronic Photon Rates

For a hadronic gas in thermal equilibrium the number of photon produced per unit four volume

and unit three momentum is tied to the electromagnetic current-current correlation function [4]

q0dN

d3q
= −

!em

4"2
2

1+ eq0/T
ImWF(q) , (2.1)

with q2 = 0 and

WF(q) =W0+
∫

d"1W" +
1

2!

∫

d"1d"2W"" + · · · (2.2)

The expansion in WF is carried over stable hadronic states. At RHIC the baryonic potential is

small, so the nucleons can be ignored in the expansion. Here

d"i =
d3ki

(2")3
n(Ei)

2Ei
. (2.3)

counts the pion phase space. We have defined

W0 = i

∫

d4xeiq·x〈0|T ∗Jµ(x)Jµ (0)|0〉

W" = i

∫

d4xeiq·x〈"a(k1)|T ∗Jµ(x)Jµ (0)|"a(k1)〉

W"" = i

∫

d4xeiq·x〈"a(k1)"b(k2)|T ∗Jµ(x)Jµ (0)|"a(k1)"b(k2)〉 (2.4)

with the sum over isospin subsumed.
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The first contribution in (2.4) is dominated by the transverse part of the isovector correlator

and is entirely fixed experimentally by the measured electroproduction data. It vanishes for real

photons, i.e. W0 = 0. The next two terms,W" andW"" , can be reduced to measurable vacuum

correlators by the the chiral reduction formulae [5]. For instance [4, 5]

WF
" (q,k) =

12

f 2"
q2 Im#V (q2)

−
6

f 2"
(k+q)2 Im#A

(

(k+q)2
)

+(q→−q)

+
8

f 2"

(

(k ·q)2−m2"q
2
)

Im#V (q2)× Re$R(k+q)+ (q→−q)

(2.5)

where Re$R is the real part of the retarded pion propagator, and#V and #A are the transverse parts

of the VV and AA correlators. Their spectral functions are related to both e+e− annihilation and

%-decay data. The two-pion reduced contributionW"" is more involved [4, 6].

The dielectron rates follow exactly the same analysis since they correspond to virtual photon

emissivities corrected by leptonic matrix elements. Specifically, for q2 < 0,

dR

d4q
=

−!2

3"3q2

(

1+
2m2l
q2

)(

1−
4m2l
q2

)1/2
1

1+ eq
0/T

ImWF(q) (2.6)

Thus

dR

d4q
=

2!

3" q2

(

1+
2m2l
q2

)(

1−
4m2l
q2

)1/2 (

q0 dN∗

d3q

)

(2.7)

which ties the dielectron rate to the virtual photon rate N∗ again for spacelike momenta. The chiral

reduction approach to both dielectrons and photons preserve the nature of this relation. This is not

the case for most approaches based on specific hadronic processes. This point is important while

analyzing both the electron and photon data reported by PHENIX, since the latter are extrapolated

from the former.

In Fig. 1 we compare our hadronic rates with the complete leading order quark-gluon plasma

rates [7] for a broad range of photon energies at the highest hadronic temperature T = 190 MeV

and for a substantial coupling !s = 3/4. We note that our full hadronic rates are consistently higher

than the leading order QGP rates even at the highest photon energies. The hadronic bremsstralung

at low photon energies dwarf the near-collinear bremsstralung from the quarks and antiquarks in

the QGP [8].

3. Spectra in Ultra-relativistic Heavy-Ion Collisions

The hadronic and partonic rates are usually convoluted with the time-evolution history of the

fireball from inception at about 1/2 fm/c to thermal freezeout at about 10 to 15 fm/c, depending on

the collider energy. The final evolved rates are then folded with the detector acceptance to compare
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Figure 1: Hadronic photon rates versus partonic rates.

with experiments. In table 1 we summarize our initial parameters based on hydrodynamical evolu-

tion as in [8]. The equation of state used for the SPS evolution is based on the bag model, while

the equation of state used for both RHIC and LHC is based on lattice results. The SPS evolution

ignores baryons in line with the hadronic expansion above. This approximation fares poorly at the

SPS, so our emissivity quotes should be viewed as lower bounds.

Parameter SPS RHIC 1 RHIC 2 LHC
√
sNN [A–GeV] 17.3 200 200 5500

A 208 197 197 208

' in.NN [mb] 33 40 40 60

Cs 8.06 20.8 20.8 42

CB 0.191 0. 0. 0.

Centrality: 0-10% 0-20% 0-20% 0-20%

b [fm] 3 4.5 4.5 4.8

Npart 340 269 269 293

%0 [fm/c] 1 1 0.5 0.5

T (r⊥ = 0,%0) [MeV] 245 336 398 501

Tf rzout [MeV] 120 140 160 140

Table 1: Hydrodynamical parameters for: SPS, RHIC and LHC.

3.1 SPS

In Fig. 2 (left) we detail our evolved photon emissivities fromW" andW"" versus the improved
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and leading order QGP rates for WA98 at an impact parameter of b = 3 fm which involves about

340 participants initially. The hadonic rates are substantially larger than the QGP rates both at

low and high photon energies. In Fig. 2 (right) we compare our rates with the data from [9].

Remarkably, our hadronic rates fit the photon data both at very low and very high energy although

on the lower side. Since our current rates do not include baryons, this is expected. The inclusion of

the latters should improve the fits both at low and high energy. In the intermediate mass region, our

rates favor the current upper bounds from the data and is consistent with a previous analysis using

W" and the baryon contributions [4].
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Figure 2: Photon Spectra at the SPS: Rate comparison (left) and Data comparison (right).

3.2 RHIC

In Fig. 3 we show the evolved photon rates versus RHIC data for the two different hydrody-

namical set ups in Table 1, (left) is RHIC1 and (right) is RHIC2. RHIC2 is a bit more explosive

than RHIC1 although both account correctly for the final hadron multiplicities. The scaled pp data

by the number of participants are added to account for the contribution from the prompt pp colli-

sions not included in our rate analysis. For RHIC1 our analysis is consistent with the current data

as reported above 1GeV. Interestingly enough, for RHIC1 the first two photon points around 1 GeV

are well described by the addition of the hadronic rates. The scaled pp emissivities rapidly take

over the QGP emissivities around 1.5 GeV to reproduce the data. The photon data appears to favor

the parameter set RHIC1 as ooposed to RHIC2. The latter is more explosive with a longer lifetime

for the QGP phase than in RHIC1.

3.3 Photon spectra at LHC

In Fig. 4 we display our projected photon emissivities at LHC using the hydrodynamical pa-

rameter set in Table 1. We expect the conditions at LHC to be a bit more explosive than RHIC, and

therefore favoring a parameter choice more in line with RHIC2. The photon emissivities are QGP

dominated between 1−2.5 GeV with the hadronic emissivities being comparable to the QGP ones
at about 1 GeV. The prompt pp photon emissivities take over the yield at about 2.5 GeV.
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Figure 3: Photon spectra at RHIC versus data: RHIC1 (left) and RHIC2 (right).
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Figure 4: LHC.

4. Conclusions

Current theoretical approaches to the electromagnetic emissivities in ultrarelativistic heavy ion

colliders are well constrained by partonic/hadronic calculations within a broad range of energies.

The exception is the dilepton spectrum reported by PHENIX in the intermediate mass range, where

experiment exceeds the best calculations by almost a factor of 1.5. It is worth pointing that the

extrapolated photon measurements by PHENIX are consistent with current calculations, making

the low mass dielectron discrepancy more puzzling. This said, it is clear that the strength and

character of the electromagnetic emissivities point to the formation of a primordial quark and gluon

in heavy-ion collisions, with temperatures of the order of 350 MeV at RHIC and perhaps 500 MeV
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at the LHC.
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