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eikonal approximation, the Yang-Mills (YM) equations containing the external fermion current

are solved. The derived solutions are quantized in the quasi-classical approach. The developed

model proves to have the self-consistent solutions of the Dirac and Yang-Mills equations atN≥ 3.

Thereat the solutions take place provided that the fermion and gauge fields exist simultaneously,

so that the fermion current completely compensates the current generated by the gauge field due

to it self-interaction. The obtained solution are considered in the context of QCD.
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1. Introduction

The study of non-Abelian gauge fields plays an important role in the modern field theory[1,
2, 3]. The non-Abelian gauge field are a basis of QCD[4]. The knowledge of solutions of the YM
equations enable us to understand specifics of processes in the strong interacting matter generated
in collisions of heavy ions of high energies[5]. Primarily, this concerns studying the observable
states of such matter as well as the processes accompanying evolution of the medium.

Studying the non-Abelian gauge fields has a very long history which was started by the classic
paper by C.N.Yang and R.L.Mills[6]. Since the paper[6] has issued is a lot of papers[7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17] have been devoted to deriving the solutions of the YM equation in various
situations. The solution of the source-less YM equation in terms of plane waves was derived
in[7, 8]. A wide class of solutions of the YM equation concerns (1+3) Minkowski space-time in
the presence of external sources[9, 10, 11, 12, 13]. In some specific case of (1+2) space-time the
YM equation were solved[14] for the SU(2) gauge field. The spherical symmetric solutions are
found for theSU(2) fields in Ref.[15]. The Dirac equation in the presence of theSU(3) YM field
is considered[16, 17] in terms of studying the confinement problem. The quark confinement in
the curve space-time is considered in Ref.[18]. Rather detailed review of the paper devoting to
quantizing the YM field is in the monographs by A.Slavnov and L.Faddev[19].

Consistent consideration of strong interacting matter (generated, for example, in collisions of
high energy ions) demands, generally, solving the Dirac and Yang-Mills equations simultaneously.
The first step in studying such problem, naturally (see Ref.[20, 21]) , is the attempt to derive the
solution of such equations when the YM field has the form of some modified plane wave so that
the both the Dirac and Yang-Mills fields will be in the confined region of space. The knowledge
of the self-consistent solution of the Yang-Mills and Dirac equations in such approximation allows
us to obtain the exact Green’s function of a fermion field. As a result, it enables to drive both the
renormalized vertex functions and effective mass of a fermion as well as to calculate the observable
characteristics of the strong interacting matter generated in collisions of high energy ions[5] beyond
the perturbation theory.

In the present paper the quasi-classical model in theSU(N) gauge theory with the Yang Mills
field is developed. The self-consistent solution of both the nonhomogeneous Yang-Mills equation
and Dirac equations in an external field are derived when the gauge Yang-Mills field is in the eikonal
form. It is shown that the self-consistent solutions of such equations takes place whenN≥ 3. They
occur provided that the fermion and gauge fields exist simultaneously, so that the fermion current
completely compensates the current generated by the gauge field due to its self-interaction. Thereat
there is no energy flux from the range of space where the fields are localized. Thereat, interaction
between the fermions and YM field leads , in the mean, to the re-normalization a fermion mass.
The re-normalized mass depends strongly on the temperature of matter.

2. The YM equations in the presence of external current

We consider theSU(N) gauge fieldAν
a generated by a fermion current. It satisfies the following

equations[19, 22]:
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∂µFνµ
a (x)−g· f c

ab Ab
µ(x)Fνµ

c (x) =−gJa
ν(x) (2.1)

Fνµ
a (x) = ∂ νAµ

a (x)−∂ µAν
a(x)−g· f bc

a Aν
b(x)Aµ

c (x), (2.2)

Ja
ν(x) = Ψ̄(x)γνTaΨ(x), (2.3)

where the fermion fieldsΨ(x),Ψ̄(x) are governed by the Dirac equation:

{
iγµ (

∂µ + ig ·Aa
µ(x)Ta

)−m
}

Ψ(x) = 0 (2.4)

Ψ̄(x)
{

iγµ
(←−∂ µ − ig ·A∗a

µ(x)Ta

)
+m

}
= 0; Ta =

1
2

λa. (2.5)

Here,m is a fermion mass,g is the coupling constant;γν are the Dirac matrixes[23, 24], x≡
xµ = (x0;~x) is a vector in the Minkowski space-time;∂µ = (∂/∂ t;∇); the Roman letters numerate
a basis in the space of the associated representation of theSU(N) group, so thata,b,c = 1. . .N2−
1. We use the signaturediag(G µν) = (1;−1;−1;−1) for the metric tensorG µν . The line and
"dagger" overΨ mean the Dirac and hermitian conjugation, respectively[17]. Summing over any
pair of the repeated indexes is implied.

The symbolsTa in Eqs.(2.3)-(2.5) are the generators of theSU(N) group which satisfy the
commutative relations and normalization condition:

[Ta,Tb]− = TaTb−TbTa = i f c
ab Tc; f c

ab =−2 i Tr
(
[Ta,Tb]−Tc

)
(2.6)

Tr (Ta Tb) =
1
2

δab; (2.7)

where f c
ab are the structure constant of theSU(N) group, which are real and anti-symmetrical

with respect to the transposition in any pair of indexes;δab is the Kroneker symbol. In the matrix
representation the operators(2 Ta) coincide with the Pauli and Gill-Mann matrixes whenN is equal
to 2 or 3, respectively.

It directly follows from Eqs.(2.6), (2.7) that

[Ta,Tb]+ = TaTb +TbTa =
1
N

δab+dabcT
c, dabc = 2 Tr

(
[Ta,Tb]+ Tc

)
(2.8)

wheredabc is real and symmetrical with respect to the transposition in any pair of indexes.
The main goal is to derive the self-consistent solutions of of Eqs.(2.1)-(2.5) which will be

localized in the confined region of space. We find the solution when the fieldAa
ν(x) is in the form:

Aν
a(x) = Aν

a(ϕ(x)), (2.9)
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whereϕ(x) is some scalar function in the Minkowski space-time which is such that:

(∂µϕ)(∂ µϕ)≡ kµkµ = 0; (2.10)

The last formula determines the well known eikonal approximation whereϕ(x) can be interpretable
as the function governing the wave surface of the fieldAν

a.
We take the axial gauge for the fieldAa

µ(x) :

∂ µAa
µ = 0; kµ Ȧa

µ = 0, (2.11)

where the dot over the letter means differentiation with respect to the introduced variableϕ.
Taking into account of both the dependence ofAa

ν(x) on the variablex via the functionϕ(x)
and formulae (2.10), (2.11), we derive from Eqs.(1), (2):

−(
∂µ∂ µϕ(x)

) · Ȧν
a−gkν f c

ab Ab
µ(ϕ)Ȧµ

c (ϕ)+g2 f c
ab f sr

c

{
Ab

µ(ϕ)Aν
s (ϕ)Aµ

r (ϕ)
}

=−g Jν
a (x);

Jν
a (x) = Ψ̄(x)γνTaΨ(x). (2.12)

It follows from Eq.(2.12) that in order to derive the solution of the YM equation it is necessary
to calculate the fermion currentJν

a (x), given by Eq.(2.3). We assume that the fieldAν
a(ϕ) can

expanded as follows in the local frame:

Aν
a(ϕ) = A

(
eν
(1)(ϕ)cos(ϕ(x)+ϕa)+ eν

(2)(ϕ)sin(ϕ(x)+ϕa)
)

+Ba ∂ νϕ(x)

eν
(1)kν = eν

(2)kν = 0; ėν
(1) = eν

(2); ėν
(2) =−eν

(1) ;kν ≡ ∂ νϕ(x), (2.13)

whereeν
(1),(2)(ϕ) are the space-like 4-vectors on the wave surfaceϕ(x) which are independent on

the group variablea; the symbolsA, Ba andϕa are the constants in the Minkowski space-time.
They are determined via the initial condition of the studied problem. It is obvious that the function
ϕ(x) can be taken so that the fieldAa

ν(x) will be localized in the confined region of space.

3. Fermions in the external YM field

To obtain the fermion fieldΨ(x) we go from Eq.(2.4) to the so-called quadric Dirac equation
which has the following form:

{
−∂µ∂ µ −m2 +g2(

γµAa
µTa

)2 +2ig
(
γµAa

µTa
)(

γµ∂µ
)
+ ig

(
γµkµ

)(
γµ Ȧa

µTa
)}

Φ(x) = 0;

Ψ(x) =

{
iγµ (

∂µ − ig ·Aa
µ(x)Ta

)
+m

2m

}
Φ(x) (3.1)

First, to derive the solution of the last equation we simplify the third term in the left-hand side
of Eq.(3.1).
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Let the initial conditions be so that the phasesϕa in Eq.(2.13) satisfy the equations:

d bc
a cos(ϕa−ϕb) = 0. (3.2)

The last formula means that different generatorsTa rotate spinors independently in spite of interac-
tion of a fermion with an external field.

Then, using Eqs.(2.6)-(2.8) and relations for theγ-matrixes[23, 24] we obtain after the direct
calculations:

(
γµAa

µTa
)2 =

(
1

2N
δab+

1
2

dabcT
c +

i
2

fabcT
c
)

(G µν +σ µν)Aa
µAb

ν =
1

2N
Aa

µAµ
a ;

σ µν =
1
2

(γµγν − γνγµ) (3.3)

We note, that the term containing( fabcTcσ µνAa
µAb

ν) disappears since the vectorseν
(1),(2) in the

expansion (13) are independent on the group variablea. The same takes place in Eq.(3.1) when the
term containsσ µν .

Let us find the solution of Eq.(3.1) in the following form:

Φ(x)≡Φσ ,α(x, p) = e−ipx ·Fσ ,α(ϕ). (3.4)

whereFσ ,α(ϕ) is some multicomponent function which is the generalized Dirac spinor. It depends
on both the spin variableσ and the variableα which specifies the state of a fermion in the space
of the fundamental representation of theSU(N) group, thereatα = 1÷N; pν =

(
p0,~p

)
is some

4-vector.
We substituteΦa,α(x, p) as Eq.(3.4) into the formula (3.1). Using the relations for theγ-

matrixes[23, 24], the independence ofeν
(1),(2) on the group variablea in the local frame (see

Eq.(2.13)) as well as Eq.(2.10), (2.11), (3.3), we obtain:

{
p2−m2− g2(N2−1)A2

2N
−2g

(
TaAa

µ pµ) − ig
(
γµkµ

)(
γµTaȦa

µ
)}

Fσ ,α(ϕ)+ i (pk) Ḟσ ,α(ϕ) = 0;

kµ = ∂µϕ(x); (pk) = pµkµ ; (3.5)

where the dot oveṙFσ ,α(ϕ) means the derivative with respect to the variableϕ.
In obtaining the last equation we neglect|∂µkµ | as compared with|(pk)| (see Eq.(3.5)). This

means that the wave lengthλYM of the YM field is unchangeable on the scale which is of the order
of the de Broglie wave length of a fermionλF :

|∂µkµ |= |∂µ∂ µϕ(x)| ∼
∣∣∣∣

dλYM

λ 2
YM dx

∣∣∣∣¿
1

λYM λF
∼ |(pk)| ⇔

∣∣∣∣
dλYM

dx

∣∣∣∣¿
λYM

λF
¿ 1 (3.6)

The last inequality corresponds to the so called quasi-classical approximation and means that
∂µkµ = 0. The condition∂µkµ = 0 can be treated as the scale invariance of the wave surface of

5
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the YM field. Thereat, the form of the wave surface is determined by some harmonic functions
satisfying D’Lambert equation∂µ∂ µϕ(x) = 0 .

The solution of Eq.(3.5) can be written in the form:

Fσ ,α(ϕ) = exp

(
−ig2(N2−1)A2

2N(pk)
ϕ

)
exp




−ig Ta

ϕ∫
0

dϕ ′
(
Aa

µ pµ)
+ i

2

(
γµkµ

)(
γµAa

µ
)

(pk)





uσ (p) ·vα ,

p2 = m2; ∂µkµ = ∂µ∂ µϕ(x) = 0; (3.7)

whereuσ (p) andvα are some spinors which are the elements of spaces of the corresponding rep-
resentations.

The second exponent in Eq.(3.7) is an operator acting on the spinorsuσ (p) and vα . The
transformation of it is absolutely analogous to the calculations made in Ref.[25] and consists of
separating the groups of odd and even terms in the expansion of the exponent (see Ref.[25]). As a
result , we obtain:

Ψσ ,α(x, p) =

Φσ ,α(x, p) = cosθ ·exp

(
−ig2(N2−1)A2

2N(pk)
ϕ− ipx

) {
1− igTa

tanθ
θ(pk)

ϕ∫

0

dϕ ′
(
Aa

µ pµ)

+

g
(
γµkµ

)(
γµAa

µ
)

2(pk)
·

[
tanθ

θ
Ta +

g
(pk)

1
2N

ϕ∫

0

dϕ ′
(
Aa

µ pµ)

−i

tanθ
θ

+
g

(pk)
θ − tanθ

θ 3 Tb

ϕ∫

0

dϕ ′
(

Ab
µ pµ

)



]}
uσ (p) ·vα .

(3.8)

Following the structure of the last formula it is naturally to determine the spinoruσ (p) as the
standard Dirac spinors which satisfy the free Dirac equation and are normalized as follows:

ūσ (p)uλ (p′) =±2m δσλ δpp′ ; p2 = m2, (3.9)

where the plus and minus signs correspond to the Dirac scalar production of the spinorsuσ (p) and
uσ (−p), respectively.

As for the spinorvα we determine it by the relations:

v†
α vβ = δαβ ; Tr(Ta) = 0; Tr(Ta Tb) =

1
2

δab. (3.10)

The function (3.8) can be normalized by theδ -function as follows:

∫
d3xΨ∗

σ ,α(x, p′)Ψσ ,α(x, p) = (2π)3δ 3(~p−~p ′). (3.11)

6
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They allow us to drive the mean valueQµ of the kinetic momentum of a fermionpµ −gTaAµ
a .

After a direct calculations we get

(Q0)2 = ~p 2 +m2
∗; m2

∗ = m2 +
g2(N2−1)A2

2N
(3.12)

InterpretingQ0 as the mean value of the energyE of a fermion in an external field, we conclude
from the last equation that the interaction of a fermion with an external field leads, in the mean, to
the re-normalization of a fermion mass.

The direct calculation shows thatΦσ ,α(x, p) andΦ−σ ,α(x,−p) are orthogonal. In this way,
it is obvious, thatΦσ ,α(x, p) is the so-called positively frequency function whereasΦ−σ ,α(x,−p)
is negatively frequency one[16, 17]. This fact allows us to construct the general solution of the
Dirac equation which describes the states both particles and anti-particles. As a result, the general
solution of Eq.(3.1) provided that∂µkµ = 0 is

Ψ(x) = ∑
σ ,α

∫
d3p√

2p0 (2π)3

{
âσ ,α(~p)Ψσ ,α(x, p)+ b̂†

σ ,α(~p)Ψ−σ ,α(x,−p)
}

Ψ̄(x) = ∑
σ ,α

∫
d3p√

2p0 (2π)3

{
â†

σ ,nα(~p) Ψ̄σ ,α(x, p)+ b̂σ ,α(~p) Ψ̄−σ ,α(x,−p)
}

, (3.13)

where the symbolŝa†
σ ,α(~p); b̂†

σ ,α(~p) andâσ ,α(~p); b̂σ ,α(~p) are the operators of creation and cancel-
lation of a fermion (̂aσ ,α(~p); â†

σ ,α(~p)) and anti-fermion (̂bσ ,α(~p); b̂†
σ ,α(~p)) , respectively[22, 23].

Thereat,âσ ,α(~p) ĺ â†
σ ,α(~p); b̂σ ,α(~p) and b̂†

σ ,α(~p) satisfy the standard commutative relations for
fermion operators.

4. Solution of YM equation in the eikonal approximation

Let us fix the state of fermion vacuum so that the bilinear combinations of the operators of
creation and cancellation of fermions are diagonal. SubstitutingΨ̄(x) andΨ(x) given by Eq.(3.8),
(3.13) into the formula (2.3) we derive the fermion currentJν

a . When the fermion system is ho-
mogeneous and isotropic the current is proportional to the vectorAν

a. Taking into account of the
explicit form of the fieldAν

a given by Eq.(2.13), we substitute the derived currentJν
a into Eq.(2.12).

As a result, we obtain:

2 f c
ab sin(ϕb−ϕc) = f c

ab

{
f sr
c cos(ϕb−ϕr)+{cos(ϕb−ϕr) cos(ϕs−ϕa)} f bs

c

N

}
Bs;

(4.1)

A2 ·C =−(N2−1)∑
σα

∫
d3p

p(0)(2π)3
〈â†

σ ,α(~p)âσ ,α(~p)+ b̂σ ,α(~p)b̂†
σ ,α(~p)〉, (4.2)

where

7
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C = f c
ab f sr

c {cos(ϕb−ϕr) cos(ϕs−ϕa)}< 0. (4.3)

The equations (4.1), (4.2) are closed with respect to the unknown quantitiesA andBa. Having
been solved they determine both the fermion and gauge field by means of Eqs.(2.13), (3.8), (3.13)
so that the wave surfaceϕ(x) is governed by relations (2.10), (3.6), (3.7).

Note that in the case of theN = 2 (when theSU(2) gauge symmetry occurs) the convolution
(4.3) containing cosines is always positive since the structure constantsf c

ab are the completely
antisymmetrical tensor of the third rangε c

ab due to the Jacob equality[22]:

C = f c
ab f sr

c {cos(ϕb−ϕr) cos(ϕs−ϕa)}=
N2−1

∑
a,b=0

sin2(ϕs−ϕa)≥ 0. (4.4)

This means that in the framework of the developed model there is no self-consistent solution
of the Dirac and Yang-Mills equations for theSU(2) gauge symmetry. In the cases of the groups
whose dimension is more thenN = 2 the structure constantsf c

ab can not be expressed in terms of
the tensorε c

ab . As a result, it possible to fix the differences between phase in the convolutionC so
thatC≤ 0.

As for the coefficientsBs they satisfy the set of linear algebraical equations. The matrix of
this set is symmetrical and, moreover, its diagonal elements are not all equal to zero. This means
that the equation forBs has the only solution.

As a result, we have the following. The problem governed by Eqs.(2.1)-(2.5) has the only so-
lution whenN≥ 3. The solutions are determined by Eqs.(2.13), (3.13), (4.1), (4.2) and correspond
to the eikonal consideration when the wave surface of the fields are determined by the equations:

(
∂µϕ(x)

) · (∂ µϕ(x)) = 0;
(
∂µ∂ µ)

ϕ(x) = 0 (4.5)

It follows from Eqs. (2.13), (3.13), (4.1), (4.2) that the Yang-Mills and Dirac equations has the
self-consistent solution when the fermion current compensates the current of the gauge field which
appears due to self-interaction of such field. In other words, in the the framework of the developed
model there is no the YM field without fermions. In terms of QCD this means that quarks and
gluons can not exist separately in such approach.

We should note here that the second relation in Eq.(4.5) implies that the functionϕ(x) which
is the argument in the expansion (2.13) of the fieldAν

a is the so called harmonic function. Owing to
the initial conditions it can be always taken such that the fieldAν

a will be localized in the confined
region of space.

5. Developed model in context of QCD

First, we discuss the applicability of the developed model to description of the strong inter-
acting matter generated in collisions of heavy ions of high energies. The quasi-classicality of the
model means that the occupancy number of particle are large.

8
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In the RHIC and SPS experiments the characteristic temperatureT of an equilibrium quark-
gluon plasma isT ∼ 200÷400MeV. The estimations of the initial density of energy of the plasma
give that the energy densityw∼ 10 Gev·F−3 while the volume of a fireball is not less thanV0 ∼
102 F3. Then the number of particlesN0 inside the fireball is of the order of

N0 ∼ w V0

T
& 2.5·103, (5.1)

that is in agreement with the quasi-classical approximation.

The gas parametern1/3
0 T−1 is of the order of(n1/3

0 T−1) ∼ 1.46÷3.7 at such density of the
matter. On the other hand, the mean effective mass of a quark is of the order of

m∗ ∼
(

2N
g(N2−1)

) 1
2

(
n0

2|C|T3

)1/2

T ;
m
T
¿

(
n0

|C|T3

)
¿ 1;

m∗ ∼ 3
√

n0 ;

(
n0

|C|T3

)
À 1. (5.2)

It follows from the last formulae that in the intermediate range of the density of mattern0 ∼
(gT)3 the effective mass is proportional to the temperature of the matter that corresponds to the
result of the calculation of the thermal mass of a quark in the hard loop approximation[26, 27]:

m∗ ∼ g T. (5.3)

6. Conclusion

The quasi-classical model in the gaugeSU(N) field theory is considered when the YM field is
assumed to be in form of the eikonal wave. The self-consistent solutions of the non-homogeneous
YM equation and the Dirac equation in the external YM field is derived.

It is shown that the considered problem is solvable when the dimension of the gauge group
N≥ 3. Thereat, the currents generated by fermions and gauge field exactly compensate each other.

We shown that the developed model corresponds to the quasi-classical consideration of the
problem. In the case of an equilibrium matter which consists of quarks and gluons, such approxi-
mation corresponds to the smallness of wave length of the YM field as compared with the inverse
temperature of the matter.

The relation of the developed model to the generally accepted point of view on the matter
generated in collisions of heavy ions of high energies is considered. In the case of the hot homoge-
neous equilibrium quark-gluon plasma the re-normalization of a fermion mass leads to appearing
the thermal mass of a quark which strongly depends on the matter temperature. We show that in the
intermediate range of the density and temperature of the plasma,n0∼ g3T3, the dependence of the
quark mass on the matter temperature and coupling constant (see Eq.(5.3)) corresponds to the re-
sults of the calculation of it which have been made in the hard thermal loop approximation[26, 27]
early.
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