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1. Introduction

The study of non-Abelian gauge fields plays an important role in the modern field thegory[
2,13]. The non-Abelian gauge field are a basis of Q@D[The knowledge of solutions of the YM
equations enable us to understand specifics of processes in the strong interacting matter generated
in collisions of heavy ions of high energi®&§[ Primarily, this concerns studying the observable
states of such matter as well as the processes accompanying evolution of the medium.

Studying the non-Abelian gauge fields has a very long history which was started by the classic
paper by C.N.Yang and R.L.Mill§]. Since the pape8] has issued is a lot of papevsB, 19,10, 11,
12,113,114, 15,116, 17] have been devoted to deriving the solutions of the YM equation in various
situations. The solution of the source-less YM equation in terms of plane waves was derived
in[7,'8]. A wide class of solutions of the YM equation concerns (1+3) Minkowski space-time in
the presence of external sour@4l0, /11,12, [13]. In some specific case of (1+2) space-time the
YM equation were solvedH] for the SU(2) gauge field. The spherical symmetric solutions are
found for theSU(2) fields in Ref.[L5]. The Dirac equation in the presence of tid(3) YM field
is consideredl6, [17] in terms of studying the confinement problem. The quark confinement in
the curve space-time is considered in RE]] Rather detailed review of the paper devoting to
quantizing the YM field is in the monographs by A.Slavnov and L.Fadidpv[

Consistent consideration of strong interacting matter (generated, for example, in collisions of
high energy ions) demands, generally, solving the Dirac and Yang-Mills equations simultaneously:.
The first step in studying such problem, naturally (see R&f21]) , is the attempt to derive the
solution of such equations when the YM field has the form of some modified plane wave so that
the both the Dirac and Yang-Mills fields will be in the confined region of space. The knowledge
of the self-consistent solution of the Yang-Mills and Dirac equations in such approximation allows
us to obtain the exact Green'’s function of a fermion field. As a result, it enables to drive both the
renormalized vertex functions and effective mass of a fermion as well as to calculate the observable
characteristics of the strong interacting matter generated in collisions of high enerd} mnsind
the perturbation theory.

In the present paper the quasi-classical model irStigN) gauge theory with the Yang Mills
field is developed. The self-consistent solution of both the nonhomogeneous Yang-Mills equation
and Dirac equations in an external field are derived when the gauge Yang-Mills field is in the eikonal
form. It is shown that the self-consistent solutions of such equations takes placéwha8nThey
occur provided that the fermion and gauge fields exist simultaneously, so that the fermion current
completely compensates the current generated by the gauge field due to its self-interaction. Thereat
there is no energy flux from the range of space where the fields are localized. Thereat, interaction
between the fermions and YM field leads , in the mean, to the re-normalization a fermion mass.
The re-normalized mass depends strongly on the temperature of matter.

2. The YM equations in the presence of external current

We consider th&U(N) gauge field\; generated by a fermion current. It satisfies the following
equationsls, 22):
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OuFYH (X) — 9+ T AL ()FZH (X) = —g&Y (X) (2.1)
FYH(x) = 0VAL (X) — 9 AL (X) — g T,2A ()AL (%), (2.2)
3V (X) = W)Y T¥(X), (2.3)

where the fermion field¥(x), W(x) are governed by the Dirac equation:

{iy* (0u+ig- A (X)Ta) —m}W(x) =0 (2.4)

W(x) {iy“ (7,1 - ig-A*ﬁ(x)Ta) v m} —0;, Ta= %/\a. (2.5)

Here,mis a fermion masgj is the coupling constany)” are the Dirac matrixe&B, 24|, x =
xH = (x%;X) is a vector in the Minkowski space-timé; = (d/4t; 0); the Roman letters numerate
a basis in the space of the associated representation 8tii) group, so thaa, b,c=1...N? —
1. We use the signaturdiag(4*') = (1;—1;—1,;-1) for the metric tenso*V. The line and
"dagger” ove® mean the Dirac and hermitian conjugation, respectitgly[Summing over any
pair of the repeated indexes is implied.

The symbolsT, in Egs.(2.3)-(2.5) are the generators of Big(N) group which satisfy the
commutative relations and normalization condition:

[Ta, Tb], - TaTb - TbTa - | fabCTC; fabc = _2 | Tr ([Ta, Tb] _ Tc) (26)

Tr(TaTh) = %5ab; 2.7)

where f,,° are the structure constant of t&&J(N) group, which are real and anti-symmetrical
with respect to the transposition in any pair of index@g;is the Kroneker symbol. In the matrix
representation the operatdgsT,) coincide with the Pauli and Gill-Mann matrixes whigrs equal
to 2 or 3, respectively.

It directly follows from Egs.(2.6), (2.7) that

1
Ta, To] . = TaTb +ToTa = Ndab +dapcTC, dape=2Tr ([Taa Tol 4 Tc) (2.8)
wheredayc is real and symmetrical with respect to the transposition in any pair of indexes.

The main goal is to derive the self-consistent solutions of of Egs.(2.1)-(2.5) which will be
localized in the confined region of space. We find the solution when theAfjgld is in the form:

Aa(X) = Ag(¢(x)), (2.9)
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where¢ (x) is some scalar function in the Minkowski space-time which is such that:

(0u9)(0"9) = kuk" =0; (2.10)

The last formula determines the well known eikonal approximation wéxecan be interpretable
as the function governing the wave surface of the fAd
We take the axial gauge for the fiedd (x) :

OMAZ =0;  KMAZ =0, (2.11)

where the dot over the letter means differentiation with respect to the introduced variable
Taking into account of both the dependenceé\pfx) on the variablex via the functiong (x)
and formulae (2.10), (2.11), we derive from Eqgs.(1), (2):

— (0u0M9 () - AL — gR” TuSAL(B)AL(9) + 6Pl fo  {AL(SIAL(PIA (9) } = —g L ();
I (x) = W)Y Ta®(%). (2.12)
It follows from Eq.(2.12) that in order to derive the solution of the YM equation it is necessary

to calculate the fermion curred} (x), given by Eq.(2.3). We assume that the fiél¢) can
expanded as follows in the local frame:

AL(9) = A (&l (9) cOS( (x) + $a) + €l (#)SIN(@(X) + @a) ) +Fa 0" B(X)
ek =€k =0; € =€ &y =—€) K =70"9(x), (2.13)

Whereez’l)a(z)(rp) are the space-like 4-vectors on the wave surfe which are independent on

the group variabla; the symbolsA, %4, and ¢, are the constants in the Minkowski space-time.
They are determined via the initial condition of the studied problem. It is obvious that the function
¢ (x) can be taken so that the fiedd (x) will be localized in the confined region of space.

3. Fermions in the external YM field

To obtain the fermion fiel&(x) we go from Eq.(2.4) to the so-called quadric Dirac equation
which has the following form:

{~0u0% — P+ g2 (VALT) "+ 2ig (VALTa) (¥0) +10 (k) (WALT) } ©(0 = 0;
oo { iy (O —ig- A% (X)Ta) + m} o)

o (3.1)

First, to derive the solution of the last equation we simplify the third term in the left-hand side
of Eq.(3.1).
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Let the initial conditions be so that the phaggsn Eq.(2.13) satisfy the equations:

d,> cog(¢pa — ¢) = O. (3.2)

The last formula means that different generaiigreotate spinors independently in spite of interac-
tion of a fermion with an external field.

Then, using Egs.(2.6)-(2.8) and relations for thematrixesR3, 24] we obtain after the direct
calculations:

1 1 i 1
(V“A?;Ta)z = <2N5ab+ EdabcTC‘F > fabcTC> (GH" + qu)AiAe = ﬂAZAg ;

G“Vzé(v“v”—vvv“) (33)

We note, that the term containimgabcTCG‘“’AﬁAB) disappears since the vect@{g,(z) in the
expansion (13) are independent on the group variablde same takes place in Eqg.(3.1) when the
term containsgHV.

Let us find the solution of Eq.(3.1) in the following form:

D(X) =Py a(X,p) = e Px. Foa(d). (3.4)

whereF, o (¢) is some multicomponent function which is the generalized Dirac spinor. It depends
on both the spin variable and the variabler which specifies the state of a fermion in the space
of the fundamental representation of tBg(N) group, thereatr =1+ N; p¥Y = (po, rﬁ) is some
4-vector.

We substitute®, ¢ (X, p) as Eq.(3.4) into the formula (3.1). Using the relations for yhe
matrixesR3, 24], the independence céE’le) on the group variable in the local frame (see
Eq.(2.13)) as well as Eq.(2.10), (2.11), (3.3), we obtain:

2/N2 2 ) .
{pz_mz_w_zg (TaALPH) —ig (k) (y“TaAﬁ)}Fa,a<¢>+i (PK) Foa($) =O;

ky=0ud(x);  (pPK) = p"Ky; (3.5)

where the dot ovelFa7a(¢) means the derivative with respect to the variaple

In obtaining the last equation we neglgdtkH| as compared with(pk)| (see Eq.(3.5)). This
means that the wave lenghk, of the YM field is unchangeable on the scale which is of the order
of the de Broglie wave length of a fermid

dAym
A2, dx

A
<M 1 (3.6
F

|0k | = 040" d ()] ~ < ~IPK] = 1=

Avm AE A

1 'd)\YM

The last inequality corresponds to the so called quasi-classical approximation and means that
dukH = 0. The conditiond, k! = 0 can be treated as the scale invariance of the wave surface of
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the YM field. Thereat, the form of the wave surface is determined by some harmonic functions
satisfying D’Lambert equatiod, d* ¢ (x) =0
The solution of Eq.(3.5) can be written in the form:

¢ |
Jd" (ALPH) +3 (k) (VAL

_ (N2 —1)A? .0
Foa(9) = exp<—|g 2N(pk)¢> exps —ig Ty oK Us(P) - Va,
p> =n?; OukH = 9,0"9(x) =0; (3.7)

whereug(p) andv, are some spinors which are the elements of spaces of the corresponding rep-

resentations.
The second exponent in Eqg.(3.7) is an operator acting on the spigéps andv,. The

transformation of it is absolutely analogous to the calculations made irn2Ejefid consists of
separating the groups of odd and even terms in the expansion of the exponent (&%) RA&[a

result , we obtain:

l'IJ(J,C! (X7 p) =

2 2 ¢ . .
o) = cosd-exp( g g0 i) { ( T | 408 p“>) =

tan@ g 1 ¢ tanf g 6-—tanf ¢
- a M — / b u )
6 at (pk) 2N 0/ A o) ( | 0 +(pk) 03 To o/d¢ (A“p )) ] } Ug(P) - Va-

(3.8)

Following the structure of the last formula it is naturally to determine the spiggp) as the
standard Dirac spinors which satisfy the free Dirac equation and are normalized as follows:

Us (P (1) = £2M 8gy Spp; P> =nP, (3.9)
where the plus and minus signs correspond to the Dirac scalar production of the spifprand

Ug(—p), respectively.
As for the spinown, we determine it by the relations:

1
Vovp=0p Tr(Ta)=0; Tr(TaTo) = >ab: (3.10)

The function (3.8) can be normalized by thdunction as follows:

/d3qu* (% P )Wo.a(X p) = (21353 (B—p’). (3.11)
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They allow us to drive the mean val@ of the kinetic momentum of a fermigpt — gT2Aj.
After a direct calculations we get

(Q%)?=p2+n; nﬁ—szrgz('\I;l)Az (3.12)

InterpretingQ® as the mean value of the enefgpf a fermion in an external field, we conclude
from the last equation that the interaction of a fermion with an external field leads, in the mean, to
the re-normalization of a fermion mass.

The direct calculation shows théts (X, p) and®_; o (X, —p) are orthogonal. In this way,
it is obvious, thatb, ¢ (X, p) is the so-called positively frequency function wherdas; o (X, —p)
is negatively frequency orgf, [17]. This fact allows us to construct the general solution of the
Dirac equation which describes the states both particles and anti-particles. As a result, the general
solution of Eq.(3.1) provided tha}, k! = 0is

LIJUﬂ (Xa p) + B-Crf,a(p‘)wfa,a(xv - p)}

%/Wzn 8o (P

{a] Wy a(X p)+b Y oalx,—p)}, (3.13
=5 | s (2ol PP +Boa (B) P ol )} (319
where the symbola; . (B); bY.« (B) andés o (B); bo.« () are the operators of creation and cancel-
lation of a fermion %7a(ﬁ);é2’a(ﬁ)) and anti-fermion hég a(P); b}/a(ﬁ)) respectively22, 23].
Thereat,dg.q(P) | &5.4(P); bo.a(P) andbl; () satisfy the standard commutative relations for
fermion operators.

4. Solution of YM equation in the eikonal approximation

Let us fix the state of fermion vacuum so that the bilinear combinations of the operators of
creation and cancellation of fermions are diagonal. Substitwﬁbg andW¥(x) given by Eq.(3.8),
(3.13) into the formula (2.3) we derive the fermion curréit When the fermion system is ho-
mogeneous and isotropic the current is proportional to the végtoTaking into account of the
explicit form of the fieldA} given by Eq.(2.13), we substitute the derived cur®ninto Eq.(2.12).

As a result, we obtain:

bs
2f,sin(gp— gc) = fab°{ fo S"cos(¢ — ¢r) + {cOS(dp — ¢r) COS(s— $a)} f‘;“ } P
(4.1)

where
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C= fy f. " {cos(¢p— ¢r) cos(¢s— ¢a)} <O. (4.3)

The equations (4.1), (4.2) are closed with respect to the unknown quaAtéiess,. Having
been solved they determine both the fermion and gauge field by means of Egs.(2.13), (3.8), (3.13)
so that the wave surfa@g(x) is governed by relations (2.10), (3.6), (3.7).

Note that in the case of th¢ = 2 (when theSU(2) gauge symmetry occurs) the convolution
(4.3) containing cosines is always positive since the structure condtghtsre the completely
antisymmetrical tensor of the third rasgS due to the Jacob equali@Z]:

N2-1
C= fa5 fo ™' {cos(po—91) cos(ds—da)} = 5 SiN’ (¢s— ¢a) > 0. (4.4)
a,b=0

This means that in the framework of the developed model there is no self-consistent solution
of the Dirac and Yang-Mills equations for tt8J(2) gauge symmetry. In the cases of the groups
whose dimension is more théh= 2 the structure constanfg,’ can not be expressed in terms of
the tensok,;;. As a result, it possible to fix the differences between phase in the convolliion
thatC < 0.

As for the coefficients’s they satisfy the set of linear algebraical equations. The matrix of
this set is symmetrical and, moreover, its diagonal elements are not all equal to zero. This means
that the equation fatss has the only solution.

As a result, we have the following. The problem governed by Egs.(2.1)-(2.5) has the only so-
lution whenN > 3. The solutions are determined by Egs.(2.13), (3.13), (4.1), (4.2) and correspond
to the eikonal consideration when the wave surface of the fields are determined by the equations:

(Qud(x)) - (09 (x) =0;  (dud") d(x)=0 (4.5)

It follows from Egs. (2.13), (3.13), (4.1), (4.2) that the Yang-Mills and Dirac equations has the
self-consistent solution when the fermion current compensates the current of the gauge field which
appears due to self-interaction of such field. In other words, in the the framework of the developed
model there is no the YM field without fermions. In terms of QCD this means that quarks and
gluons can not exist separately in such approach.

We should note here that the second relation in Eq.(4.5) implies that the fuggtprvhich
is the argument in the expansion (2.13) of the fids the so called harmonic function. Owing to
the initial conditions it can be always taken such that the #¢ldvill be localized in the confined
region of space.

5. Developed model in context of QCD

First, we discuss the applicability of the developed model to description of the strong inter-
acting matter generated in collisions of heavy ions of high energies. The quasi-classicality of the
model means that the occupancy number of particle are large.
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In the RHIC and SPS experiments the characteristic temperatofen equilibrium quark-
gluon plasma i ~ 200--400MeV. The estimations of the initial density of energy of the plasma
give that the energy density ~ 10 Gev- F 3 while the volume of a fireball is not less th¥lp ~
107 F23. Then the number of particléd inside the fireball is of the order of

No ~ W?VO >25.10%, (5.1)

that is in agreement with the quasi-classical approximation.
The gas paramet&f%/ST‘1 is of the order of(né/ST‘l) ~ 1.46-+ 3.7 at such density of the
matter. On the other hand, the mean effective mass of a quark is of the order of

1 1/2
2N 2 Ny .o m No .
e~ <g<N2—1>> <2!C\T3> T T<<<\C|T3><< b
~ 3/n - _No
m, ~ o ; <|C|T3 > 1. (5.2)

It follows from the last formulae that in the intermediate range of the density of nrgtter
(gT)? the effective mass is proportional to the temperature of the matter that corresponds to the
result of the calculation of the thermal mass of a quark in the hard loop approxirs;i@rl[:

m,~gT. (5.3)

6. Conclusion

The quasi-classical model in the gaugléd(N) field theory is considered when the YM field is
assumed to be in form of the eikonal wave. The self-consistent solutions of the non-homogeneous
YM equation and the Dirac equation in the external YM field is derived.

It is shown that the considered problem is solvable when the dimension of the gauge group
N > 3. Thereat, the currents generated by fermions and gauge field exactly compensate each other.

We shown that the developed model corresponds to the quasi-classical consideration of the
problem. In the case of an equilibrium matter which consists of quarks and gluons, such approxi-
mation corresponds to the smallness of wave length of the YM field as compared with the inverse
temperature of the matter.

The relation of the developed model to the generally accepted point of view on the matter
generated in collisions of heavy ions of high energies is considered. In the case of the hot homoge-
neous equilibrium quark-gluon plasma the re-normalization of a fermion mass leads to appearing
the thermal mass of a quark which strongly depends on the matter temperature. We show that in the
intermediate range of the density and temperature of the plagmag®T 2, the dependence of the
quark mass on the matter temperature and coupling constant (see Eq.(5.3)) corresponds to the re-
sults of the calculation of it which have been made in the hard thermal loop approxir@é&tiav]
early.
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