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1. Introduction

Hadrons are composite objects. Their interaction with external probes likee.g.photons is pa-
rameterized in terms of Lorentz-invariant functions. The most complete information is contained
in the so-called generalized transverse-momentum dependent parton distributions (GTMDs). After
appropriate Fourier transform, the GTMDs can be interpreted as Wigner or phase-space distribu-
tions, giving access to the correlations between quark momentum and transverse position.

A brief introduction to the generalized quark-quark correlator functionsdefining the GTMDs
can be found in Section 2. On the light cone, this correlator can be written asthe overlap of light-
cone wave functions. We present in Section 3 the overlap restricted to the three quark (3Q) sector
and specify the expression to a light-front constituent quark model (LFCQM) and the chiral quark-
soliton model (χQSM). In Section 4 it is explained why working on the light cone is mandatory
to develop a (quasi-)probabilistic interpretation of the distributions. Finally, we apply in Section 5
the formalism presented in the previous sections to study the distribution of an unpolarized quark
in an unpolarized proton.

2. General Quark-Quark Correlator

The maximum amount of information on the partonic structure of the nucleon is contained in
the fully-unintegrated quark-quark correlatorW̃ for a spin-1/2 hadron [1, 2, 3, 4], defined as

W̃[Γ]
Λ′Λ(P,k,∆,N;η) =

1
2

∫

d4z
(2π)4 eik·z〈p′,Λ′|ψ(−1

2z)ΓW ψ(1
2z)|p,Λ〉. (2.1)

This correlator is a function of the initial and final hadron light-cone helicitiesΛ andΛ′, the average
hadron and quark four-momentaP = (p′ + p)/2 andk, and the four-momentum transfer to the
hadron∆ = p′− p (see Fig. 1 for the kinematics). The superscriptΓ stands for any element of the

P − ∆/2 P + ∆/2

k − ∆/2 k + ∆/2

Figure 1: Kinematics for the fully-unintegrated quark-quark correlator.

basis{1,γ5,γµ ,γµγ5, iσ µν} in Dirac space. A Wilson lineW ≡ W (−1
2z, 1

2z|n) ensures the color
gauge invariance of the correlator, connecting the points−1

2z and 1
2z via the intermediary points

−1
2z+ ∞ ·n and 1

2z+ ∞ ·n by straight lines. This induces a dependence of the Wilson line on the
light-cone directionn. Since any rescaled four-vectorαn with some positive parameterα could be
used to specify the Wilson line, the correlator actually only depends on the four-vectorN = M2n

P·n ,
whereM is the hadron mass. The parameterη = sign(n0) gives the sign of the zeroth component
of n, i.e. indicates whether the Wilson line is future-pointing (η = +1) or past-pointing (η = −1).

2



P
o
S
(
L
C
2
0
1
0
)
0
5
7

GTMDs in Light-Cone Quark Models Cédric Lorcé

The quark-quark correlators parametrized in terms of generalized parton distributions (GPDs),
tranverse-momentum dependent parton distributions (TMDs) and form factors (FFs) correspond
to specific limits or projections of Eq. (2.1). These correlators have in commonthe fact that the
quark fields are taken at the same light-cone timez+ = 0. Let us then focus our attention on the
k−-integrated version of Eq. (2.1)

W[Γ]
Λ′Λ(P,x,~k⊥,∆,N;η) =

∫

dk−W̃[Γ]
Λ′Λ(P,k,∆,N;η)

=
1
2

∫

dz−d2z⊥
(2π)3 eik·z〈p′,Λ′|ψ(−1

2z)ΓW ψ(1
2z)|p,Λ〉

∣

∣

∣

z+=0
,

(2.2)

where we used for a generic four-vectoraµ = [a+,a−,~a⊥] the light-cone componentsa± = (a0±
a3)/

√
2 and the transverse components~a⊥ = (a1,a2), andx = k+/P+ is the average fraction of

longitudinal momentum carried by the quark. A complete parametrization of this object in terms
of so-called generalized transverse momentum dependent parton distributions (GTMDs) has been
achieved in [4]. The GTMDs can be considered as themother distributionsof GPDs and TMDs.
For example, the (T-even) distribution of unpolarized quarks in an unpolarized hadron is given by
the GTMDFe

11, and is related to the GPDH and the TMDf1 as follows

H(x,0,~∆2
⊥) =

∫

d2k⊥Fe
11(x,0,~k2

⊥,~k⊥ ·~∆⊥,~∆2
⊥),

f1(x,~k
2
⊥) = Fe

11(x,0,~k2
⊥,0,0).

(2.3)

3. Overlap Representation

Following the lines of [5, 6], we obtain in the light-cone gaugeA+ = 0 an overlap representa-
tion for the correlator (2.2) at the twist-two level restricted to the 3Q Fock sector1

W[Γ]
Λ′Λ(P,x,~k⊥,∆,N;η) =

1
√

1−ξ 2 ∑
λ ′

i ,λi

∫

[dx]3 [d2k⊥]3 ∆(k̃)ψ∗
Λ′β ′(r ′)ψΛβ (r)

3

∏
i=1

Mλ ′
i λi , (3.1)

where the integration measures are defined as

[dx]3 ≡
[

3

∏
i=1

dxi

]

δ

(

1−
3

∑
i=1

xi

)

, [d2k⊥]3 ≡
[

3

∏
i=1

d2ki⊥
2(2π)3

]

2(2π)3 δ (2)

(

3

∑
i=1

~ki⊥

)

. (3.2)

Furthermore, in Eq. (3.1) the function∆(k̃) = 3Θ(x1)δ (x− x1)δ (2)(~k⊥−~k1⊥) selects the active
quark average momentum (we choose to label the active quark withi = 1 and the spectator quarks
with i = j = 2,3). The 3Q LCWFψΛβ (r) depends on the momentum coordinatesk̃i = (yi ,κi⊥) of
the quarks relative to the hadron momentum (collectively indicated byr), and the indexβ which
stands for the set of the quark light-cone helicities{λi}. The transition from the initial quark
light-cone helicityλi to the final oneλ ′

i is described by a complex-valued 2× 2 matrix Mλ ′
i λi .

In particular, we have for the spectator quarksMλ ′
j λ j = δ λ ′

j λ j . For the active quark, the matrix

1Quark flavor and color indices have been omitted for clarity. In the processes considered here the flavor and color
of a given quark remain unchanged.
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Mλ ′
1λ1 depends on the twist-two Dirac structureΓtwist-2 = {γ+,γ+γ5, iσ+1γ5, iσ+2γ5} used in the

correlator, seee.g.[7, 8, 9].
We choose to work in an infinite momentum frame such thatP+ is large,~P⊥ =~0⊥ and∆ ·P= 0.

The four-momenta involved are then

P =

[

P+,
M2 +

∆2
⊥
4

2(1−ξ 2)P+
,~0⊥

]

, ∆ =

[

−2ξP+,ξ
M2 +

∆2
⊥
4

(1−ξ 2)P+
,~∆⊥

]

,

k =
[

xP+,k−,~k⊥
]

, n =
[

0,±1,~0⊥
]

.

(3.3)

Note that the form used forn is not the most general one, but leads to an appropriate definition
of TMDs for SIDIS and DY processes. For the active and spectator quarks the initial and final
momentum coordinates are then

k̃1 =

(

x+ξ
1+ξ

,~k⊥− 1−x
1+ξ

~∆⊥
2

)

, k̃′1 =

(

x−ξ
1−ξ

,~k⊥ +
1−x
1−ξ

~∆⊥
2

)

,

k̃ j =

(

x j

1+ξ
,~k j⊥ +

x j

1+ξ
~∆⊥
2

)

, k̃′j =

(

x j

1−ξ
,~k j⊥− x j

1−ξ
~∆⊥
2

)

.

(3.4)

So far, the exact 3Q LCWF derived directly from the QCD Lagrangian is not known. Nev-
ertheless, we can try to reproduce the gross features of hadron structure at low scales using con-
stituent quark models. Many models exist on the market based on the concept of constituent quarks.
However only a few incorporate consistently relativistic effects. We focus here on two such mod-
els: the light-front constituent quark model (LFCQM) [7, 8, 9] and the chiral quark-soliton model
(χQSM) [10, 11, 12, 13, 14]. The LCWFs used in LFCQM and inχQSM have a very similar
structure given by

ψΛβ (r) = Ψ(r)∑
σi

Φσ1σ2σ3
Λ

3

∏
i=1

Dλiσi
(k̃i), (3.5)

whereΨ(r) is a global symmetric momentum wave function,Φσ1σ2σ3
Λ is theSU(6) spin-flavor wave

function, andD(k̃) is anSU(2) matrix connecting light-cone helicityλi and canonical spinσi

D(k̃) =
1

|~K|

(

Kz KL

−KR Kz

)

, KR,L = K1± iK2. (3.6)

The explicit expressions for the momentum wave functionΨ(r) in Eq. (3.5) and the vector~K in
Eq. (3.6) in LFCQM read

Ψ(r) = 2(2π)3
√

ω1ω2ω3

x1x2x3M0

N

(M 2
0 +β 2)γ , Kz = m+yM0, ~K⊥ =~κ⊥, κz = yM0−ω ,

(3.7)
whereN is a normalization factor,M0 = ∑i ωi is the free invariant mass,ωi is the free energy
of quarki, m is the constituent quark mass, andβ ,γ are model parameters fitted to reproduce the
anomalous magnetic moments of the nucleon [15]. On the other hand, within theχQSM one has

Ψ(r) = N

3

∏
i=1

|~Ki |, Kz = h+
κz

|~κ| j, ~K⊥ =
~κ⊥
|~κ| j, κz = yMN −Elev, (3.8)
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whereMN is the soliton mass,Elev is the energy of the discrete level in the spectrum, andh, j are
the upper and lower components of the Dirac spinor describing this discretelevel.

For further convenience we introduce the tensor correlator

Wµν ≡ 1
2

Tr [σ̄ µWν ] =
1
2 ∑

Λ′Λ
(σ̄ µ)ΛΛ′

Wν
Λ′Λ, (3.9)

whereWν
Λ′Λ ≡

(

W[γ+]
Λ′Λ ,W[iσ+1γ5]

Λ′Λ ,W[iσ+2γ5]
Λ′Λ ,W[γ+γ5]

Λ′Λ

)

andσ̄ µ = (1,~σ) with σi the Pauli matrices. We
now use the LCWF given by Eq. (3.5) and write the overlap representationof the correlator tensor
Wµν as

Wµν(P,x,~k⊥,∆,N;η) =
1

√

1−ξ 2

∫

[dx]3 [d2k⊥]3 ∆(k̃)Ψ∗(r ′)Ψ(r)A
µν(r ′, r), (3.10)

whereA µν(r ′, r) stands for

A
µν(r ′, r) = AOµν

1 (l2 · l3)+B
[

l µ
2 (l3 ·O1)

ν + l µ
3 (l2 ·O1)

ν] . (3.11)

In Eq. (3.11),l µ
j = Oµ0

j and the matrixOµν is given by

Oµν =
1

|~K′||~K|



















~K′ ·~K i
(

~K′×~K
)

x
i
(

~K′×~K
)

y
−i
(

~K′×~K
)

z

i
(

~K′×~K
)

x
~K′ ·~K−2K′

xKx −K′
xKy−K′

yKx K′
xKz+K′

zKx

i
(

~K′×~K
)

y
−K′

yKx−K′
xKy ~K′ ·~K−2K′

yKy K′
yKz+K′

zKy

i
(

~K′×~K
)

z
−K′

zKx−K′
xKz −K′

zKy−K′
yKz −~K′ ·~K +2K′

zKz



















. (3.12)

The tensor correlatorWµν in Eq. (3.9) has two indices. The indexµ refers to the transition in terms
of baryon light-cone helicity, while the indexν refers to the transition in terms of the active quark
light-cone helicity. For example, the componentsW00 andW03 correspond to the matrix elements
of the γ+ andγ+γ5 operators in the case of an unpolarized hadron, respectively. Equation (3.10)
gives the explicit expression for the tensor correlator in terms of the overlap of initial Ψ(r) and
final Ψ∗(r ′) symmetric (instant-form) momentum wave functions with the tensorA µν(r ′, r) for
a fixed mean momentum of the active quarkk̃. The tensorA µν(r ′, r) contains the spin-flavor
structure derived from the overlap of the three initial and final quarks.Taking into account the
possible couplings of the helicities of the active and spectator quarks to give the hadron helicity,
the coefficientA andB in Eq. (3.11) for SU(6) spin-flavor wave functions are

Ap
u = 4, Bp

u = 1, Ap
d = −1, Bp

d = 2. (3.13)

Furthermore, the matrixOµν in Eq. (3.12) describes the overlap of the initial and final quark states.
The columns are labeled by the indexν which indicates the type of transition in terms of quark
light-cone helicity. The rows are labeled by the indexµ which indicates the type of transition in
terms of quark canonical spin. This matrix reduces tol µ

i = Oµ0
i for the spectator quarks, since in

this case the light-cone helicity is conserved.
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4. Impact Parameter Space

According to the standard interpretation [17, 18], the charge density canbe identified with the
three-dimensional Fourier transform of the electric Sachs Form FactorGE, i.e. the matrix element
of the current densityJ0

ρ(~r) =
∫

d3q
(2π)3 e−i~q·~r GE(Q2). (4.1)

This identification is actually only valid in the nonrelativistic approximation. To work out the
Fourier transform, one has to know the form factors for everyQ2. In the Breit frame the latter is
identified with the three-momentum of the virtual photonQ2 =~q2. This means that for every value
of Q2 we have to move to a different frame and the charge density undergoes naturally a different
Lorentz contraction. Moreover, in order to have a probabilistic/charge density interpretation, the
number of particles should be conserved. However, in the Breit frame nothing prevents the photon
to create or annihilate a quark-antiquark pair.

All these problems are cured in the infinite momentum frame withq+ = 0 (the so-called Drell-
Yan-West frame). The photon is kinematically not allowed to change the number of quarks as
the light-cone momentum of a massive particle is strictly positivep+ > 0. Moreover, the hadron
undergoes an extreme Lorentz contraction and looks like a pancake. Onlya two-dimensional charge
density [19, 20, 21, 22, 23] is then meaningful and can be identified with thetwo-dimensional
Fourier transform of the matrix element ofJ+

ρ~s(~b⊥) =
∫

d2q⊥
(2π)2

e−i~q⊥·~b⊥

2p+
〈p+, ~q⊥

2 ,~s|J+(0)|p+,−~q⊥
2 ,~s〉, (4.2)

the photon virtuality being given byQ2 =~q⊥2, and~s denoting the hadron polarization.

5. Wigner Distributions

Wigner distributions are quantum phase-space distributions, containing allthe correlations be-
tween position and momentum of the partons. Since Heisenberg’s uncertaintyprinciple forbids to
determine precisely both position and momentum of a quantum state, Wigner distributions have
to be considered as quasi-probabilistic distributions. In the context of quantum field theory, they
have already been discussed to some extent in the Breit frame [2]. For thereason mentioned in
the previous section, it is actually preferable to work in the infinite momentum frame. By Fourier
transformingFe

11 in Eq.(2.3) with respect to~∆⊥ and integrating overx, we obtain a (transverse)
phase-space distributionρ(~k2

⊥,~k⊥ ·~b⊥,~b2
⊥). The only two available transverse vectors are~k⊥ and

~b⊥. This means that for fixed̂k⊥ · b̂⊥ and|~k⊥| the distribution is axially symmetric, which is physi-
cally meaningful since there is not a preferred direction in the transverseplane and a global rotation
aroundêz should not have any effect on the distribution of unpolarized quarks in an unpolarized
nucleon.

If we are now interested in the amplitude to find a fixed transverse momentum~k⊥ in the trans-
verse plane, the distribution is not axially symmetric anymore due to the~k⊥ ·~b⊥ dependence. Al-
though the Wigner distributions can not be directly extracted from experiments, they can be inferred
from the LCWFs parametrized on the basis of our phenomenological knowledge of GPDs, TMDs

6
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Figure 2: Typical distribution (left) and equi-amplitude line (right) of fixed~k⊥ = k⊥ êy in the transverse
plane for an unpolarized quark in an unpolarized nucleon.

Figure 3: Typical radial distributions in the transverse plane for fixedk̂⊥ · b̂ and|~k⊥| of an unpolarized quark
in an unpolarized proton. Solid line corresponds to half of the up quark distribution. Dashed line corresponds
to the down quark distribution.

and form factors. As a starting point, we used theχQSM and LFCQM which were introduced in
Section 3 and already tested in the calculation of several nucleon observables [12, 13, 14, 15, 16].

In the case ofFe
11, both models give the same qualitative picture with a larger distribution

amplitude whenk⊥ ⊥ b⊥ and smaller whenk⊥ ‖ b⊥ (see Fig. 2). This can be understood with
naive semi-classical arguments. The radial momentum(~k⊥ · b̂⊥) b̂⊥ of a quark has to decrease
rapidly in the periphery because of confinement. The polar momentum~k⊥− (~k⊥ · b̂⊥) b̂⊥ receives a
contribution from the orbital motion of the quark which can still be significant inthe periphery (in
an orbital motion, one does not need to reduce the momentum to avoid a quark escape). This naive
picture also tells us that this phenomenon should become more pronounced aswe go to peripheral
regions (|~b⊥| ≫) and to high quark momenta (|~k⊥| ≫). This tendency is supported by both models.

It is also interesting to compare up and down quark distributions. Let us fix once again̂k⊥ · b̂⊥
and|~k⊥|. The distribution being axially symmetric in the transverse plane, we focus on the radial
distribution, see Fig. 3. The up quark distribution has been divided by two for comparison with
the down quark distribution. Up quarks appear to be more concentrated around the center than
down quarks. For a neutron, we just have to exchange up and down quarks. We can therefore
see that the center of the neutron is negative, in agreement with the conclusion obtained using the
phenomenological neutron FFs [22].

7
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6. Summary

We used the framework of light-cone wave function to study generalized transverse-momentum
dependent parton distributions which parametrize the most general quark-quark correlator. These
distributions are connected to the Wigner or phase-space distributions by Fourier transform. We
presented a general expression for the 3Q contribution to the generalized correlation functions
defining the GTMDs and applied it to a light-front constituent quark model and the chiral quark-
soliton model. A non-trivial pattern for the phase-space distribution in the transverse plane for
an unpolarized quark in an unpolarized proton has been observed andinterpreted semi-classically
as related to the quark orbital angular momentum. We also confirmed the picture of a negatively
charged core in the neutron. A presentation of the systematic study of generalized transverse-
momentum dependent parton distributions is in preparation.
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