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We explore the BaBar puzzle within the Regge approach. After reviewing the chiral quark models
in applications to PDF and PDA of the pion, we argue that variants of these models, fulfilling the
chiral anomaly, may in fact violate the second Terazawa-West unitarity bound, which is based
on unverified assumptions for the real part of the amplitude. Consequently, the transition form
factor need not vanish at large values of the photon virtuality. Then we show that the experimental
data may be properly explained with incomplete vector-meson dominance in a simple model with
one state, as well as in more sophisticated radial Regge models including infinitely many states.
We also consider the experimental constraint from the rare Z → π0γ decay, which is comfortably
satisfied in our approach. Finally, we point out that the photon momentum asymmetry parameter
may noticeably influence the precision fits to the data.
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1. Introduction

After the release of the BaBar data [1] for the pion-photon transition form factor, Fπ0γγ∗ , our
community is in deep shock, as the conventional approach to the gold-plated exclusive process
at very high Euclidean momenta Q, based on 1. factorization and 2. (leading-twist) pQCD evolu-
tion [2 – 12], seems to be invalid [13, 14]. Indeed, the quantity Q2Fπ0γγ∗(Q2) goes visibly above
the famous Brodsky-Lepage limit,

Q2Fπ0γγ∗(Q
2)→ 2 fπ

Nc

∫ 1

0
dx

φas(x)
x

=
6 fπ

Nc
= 2 fπ , (1.1)

at momenta Q2 > 15 GeV2.

Several ideas, abandoning assumptions 1. and 2., have been proposed to solve the “BaBar
problem”. Radyushkin [15] and Polyakov [16] advocated that the possible nonvanishing of the
PDA at the end points (as found by the present authors in chiral quark models at the low-energy
quark-model scale [17]), together with essentially switched-off evolution and regulated quark prop-
agators, is capable of reproducing the data in the CLEO and BaBar domain. In this approach
Fπ0γγ∗ ∼ log(Q2/µ2)/Q2, with the log indicating the breaking of factorization (note that the same
asymptotics follows in the Spectral Quark Model (SQM), cf. Eq. (14.1) of [18]). Dorokhov [19 –
21] proposed the use of the fixed-mass chiral quark model to evaluate the triangle diagram of
Fig. 1, which is capable of reproducing the data at high Q2, however the fitted value of the con-
stituent quark mass is very low, M ∼ 135 MeV. In this the form Fπ0γγ∗ ∼ [log(Q2/µ2)]2/Q2. A
possible need of higher-twist terms has been brought up in [22]. The calculation of [23] in the
nonlocal chiral quark model inspired by the instanton-liquid model of QCD produced the result in
agreement with the data at lower values of Q2 and complying to the limit (1.1). On the other hand,
Dorokhov [24] considered a modified pion-meson vertex [25] in the nonlocal model and found
agreement in the whole available data range, albeit again with a very low constituent quark mass.
Asymptotically, in this approach Fπ0γγ∗ ∼ log(Q2/µ2)/Q2. The influence of nonperturbative glu-
onic components of the pion has been considered in [26]. Concerns on the validity of factorization
were discussed in [27]. It was also shown that the pronounced growth of Q2Fπ0γγ∗ between 10 and
40 GeV2 cannot be explained via higher-order pQCD corrections at the NNLO level [12]. Further
developments may be found in [28 – 31]

This talk is based on [32].
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Figure 1: The quark-model diagrams used to evaluate the pion transition form factor (left) and the Z0 → π0γ
decay (right). The crossed diagrams not shown.
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2. General constraints

Consider the process of the left part of Fig. 1 with the general kinematics

q2
1 =−1+A

2
Q2, q2

2 =−1−A
2

Q2, −1 ≤ A ≤ 1. (2.1)

The chiral anomaly [33, 34] fixes Fπ0γ∗γ∗(Q2 = 0,A) = 1
4π2 fπ

.
On the other, the high-Q2 behavior of Fπ0γγ∗ is formally limited by the Terazawa-West (TW) [35 –

37] unitarity bounds, recently brought up by Dorokhov [21] and further elaborated in [32]. The
derivation of the TW bounds uses the Schwarz inequality involving sums of the matrix elements
〈0|Jµ(0)|n〉 and 〈πa(q)|Jµ(0)|n〉, entering the vacuum polarization and the parton distribution func-
tion (PDF) of the pion. Schematically, one has |〈π|JJ|0〉| ≤ (|〈0|JJ|0〉||〈π|JJ|π〉|)1/2. Then one
derives the first bound,

ImFπ0γγ∗(q
2) = O(1/

√
q2) (TW I) (2.2)

holding at time-like momenta, q2 > 4m2
π . If there are no polynomial terms in the real part of Fπ0γγ∗

(which is an assumption), then
∣∣Fπ0γγ∗(q2)

∣∣ = O(1/
√

q2). A dispersion relation yields [37] the
second bound, ∣∣Fπ0γγ∗(Q

2)
∣∣= O(1/Q) (TW II) (2.3)

valid for all momenta, also large space-like momenta Q. The constant in the bound may be explic-
itly given [37] in terms of the photon spectral density and the pion structure function,

∣∣Fπ0γγ∗(Q
2)
∣∣< 2

√
Π(∞)

Q

∫ 1

0
dx

√
F1(x,Q2)

x(1− x)
(2.4)

where Π(s)= s/(16π3α2
QED)σe+e−→hadrons(s) and Π(∞)= 1/(12π2)∑i e2

i , with ei denting the quark
charges. With the SMRS [38] and GRV [39] parameterizations for F1 we obtain (for Q2 in the range
10−40 GeV2)

|Fπ0γγ∗(Q
2)|< 0.85(1)

Q
(LO), <

0.75(1)
Q

(NLO), (2.5)

where LO and NLO refer to Leading Order and Next-to-Leading Order in the QCD evolution,
respectively. Thus the TW II bound is “inefficient” in the present experimental range, as it goes an
order of magnitude above the BaBar data.

Finally, another interesting experimental bound comes from the rare Z → π0γ decay [40],
which probes the time-like value q2 = M2

Z . The process is shown in the right part of Fig. 1. Since
only the vector coupling of the Z0 boson to the quark contributes,

FZ→π0γ(q2)

FZ→π0γ(0)
=

Fπ0γ∗γ(q2)

Fπ0γ∗γ(0)
. (2.6)

The experimental limit given by the Particle Data Group [41], Γ(Z0 → π0γ)< 5×10−5Γtot(Z0) =

10.25×10−5GeV, implies

|FZ0→π0γ(M
2
Z)/FZ0→π0γ(0)|< 0.17. (2.7)
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3. Subtracted dispersion relation and violation of TW II

The assumption of the absence of the polynomial terms, necessary for TW II to hold, is equiv-
alent to the validity of the unsubtracted dispersion relation for Fπ0γ∗γ . Clearly, pQCD with factor-
ization leads to Fπ0γ∗γ vanishing at Q → ∞, however, since now these assumptions are questioned
(see the Introduction), one may consider the situation where subtraction constants are necessary in
the dispersion relation for Fπ0γ∗γ [32]. Note that even if the form factor vanishes at infinity, one can
write a subtracted relation

F(t)−F(0) =
1
π

∫ 4Λ2

s0

t
s

ImF(s)
s− t

ds+
1
π

∫ ∞

4Λ2

t
s

ImF(s)
s− t

ds. (3.1)

If Λ is large (Λ2 > Q2), the second term is very slowly varying with Q2 and mimics a constant. In
particular, for ImF(s) ∼ 1/

√
s it behaves as 1/Λ+O(1/Q). Thus the appearance of the constant

term need not be taken as a fundamental problem, as it may represent the unknown high-energy
data. We will analyze below a quantitative lower bound for a possible high energy mass scale.

The bottom line is that one may well consider the case where Fπ0γ∗γ(Q2) does not vanish at
Q2 → ∞. Below we will provide an explicit field-theoretic example where this is the case (the
Georgi-Manohar (GM) model [42]). Motivated by this we will also incorporate a constant term in
the fits of the BaBar data.

4. Mini-review of chiral quark models

Before discussing the GM model let us briefly review the chiral quark models and, in partic-
ular, their predictions for the soft matrix elements entering the (factorized) high-energy processes.
The purpose is to convince the reader that these models, based on chiral symmetry breaking as
the key dynamical ingredient, are very successful for numerous processes involving the pions and
photons. Chiral quark models are cast in a covariant Lagrangian form and in general exhibit no
factorization. They carry relatively few parameters, traded for fπ , mπ , . . . The large-Nc limit is
implicit, however, confinement is absent and one needs to be careful not to open the qq production
threshold. This limits the applicability range, however, no problems arise with space-like external
momenta, as in the present analysis of the BaBar puzzle. Finally, predictions of chiral quark mod-
els hold at a low-energy quark-model scale [43] and QCD evolution is necessary to reach higher
scales of experiments or lattice simulations.

We start with the valence PDF of the pion, where the NJL model gives [44]

q(x) = 1 (4.1)

(note that the same constant PDF for two constituents follows from AdS/CFT approach of [45]).
Arguments based on the momentum sum rule [43] determine the renormalization scale where
Eq. (4.1) holds: µ0 ∼ 320 MeV. Then at the scale µ = 2 GeV the valence quarks carry 47% of
the momentum of the pion, as requested by experimentally motivated parameterizations. The value
of the coupling constant at the quark-model scale is α(µ0)/π = 0.68. After the evolution the NJL
prediction agrees remarkably well with the experimental data (left panel of Fig. 2).
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Figure 2: Left: The NJL prediction for the valence PDF of the pion evolved to the experimental scale
µ = 4 GeV (band). The data points come from the analysis of the Drell-Yan data from the E615 experiment
[46]. The dashed line shows the reanalysis of the data from [47]. Right: The NJL prediction for the PDA
of the pion evolved to the lattice scale µ = 0.5GeV (band) compared to the transverse lattice data [48]. The
width of the bands indicates the uncertainty in the quark-model scale µ0.

In the NJL model, the PDA of the pion is also constant at the quark-model scale [17],

φ(x) = 1 (4.2)

(note that this result is different from the AdS/CFT prediction of [45], φ(x)∼
√

x(1− x), it is also
far from the asymptotic form 6x(1−x)). The PDA (4.2) does not vanish at the end points, which is
the focal point of [15, 16]. However, the LO ERBL evolution makes φ(x) vanish at the end-points,
with the form φ(x) ∼ x2CF/β0 log[α(µ0)/α(µ)] near x = 0 [2, 43]. Thus maintaining the nonvanishing
at the end points requires switching off the QCD evolution [15].

Finally, we mention the NJL results for the gravitational form factor of the pion, discussed
in detail in [49]. The quark-model relation holds for the radii related to the spin-2 gravitational
form factor and the charge form factor, 〈r2〉Θ = 1

2〈r
2〉V . Therefore matter is more concentrated

than charge, in agreement with the recent AdS/CFT results [50]. Note that there is no contradiction
between having a constant vertex function and a finite pion size. This issue is tightly linked with
the fulfillment of the electromagnetic and chiral Ward identities, as discussed, e.g., in [51].

5. Violating TW II

We now recall a model which reproduces the results of the previous section, but violates TW II:
the Georgi-Manohar (GM) model [42]. It is obtained from the NJL model by carrying out the chiral
rotation (which is innocuous) and then introducing gA of the quark which may be different from
unity [52]. The Lagrangian of the GM model is

L = q̄
(

i /∂ +gQ
A /Aγ5 −M

)
q+

f 2

4
Tr

(
∂µU†∂ µU

)
+WZW, (5.1)

where WZW stands for the Wess-Zumino-Witten term, while

Aµ =
i
2
(u†∂µu−u∂µu†), u = ei~π·~τ/(2 f ), U = u2. (5.2)

5



P
o
S
(
L
C
2
0
1
0
)
0
6
2

Pion transition form factor in the Regge approach Wojciech Broniowski

æ

ææ

æ

æ

àà

à
à
à

à

à
à

àà

à
à
à
à

à

ìì
ìì
ìì
ì

ìì
ì

ì

ì
ì
ì

ì

ì

ì

0 10 20 30 40
0

50

100

150

200

250

300

Q2 @GeV2D

Q
2

F
Π
Γ
Γ
*
HQ

2 L
@M

eV
D

æ

ææ

æ

æ

àà

à
à
à

à

à
à

àà

à
à
à
à

à

ìì
ìì
ìì
ì

ìì
ì

ì

ì
ì
ì

ì

ì

ì

0 10 20 30 40
0

50

100

150

200

250

300

350

Q2 @GeV2D

Q
2

F
Π
Γ
Γ
*
HQ

2 L
@M

eV
D

Figure 3: Left: predictions of the one-state IVMD model (line). Right: predictions of various Regge
models: the Veneziano-Dominguez model b = 1.81 (dashed line), model with the first pole separated and
fixed b = 1.5 (dotted line), and the subtracted Regge model (solid line). The dots, squares, and diamonds
correspond to the CELLO [55], CLEO [56], and BaBar [1] data, correspondingly.

The resulting pion-photon transition form factor is

Fπ0γγ∗(Q
2) =

1
4π2 fπ

+
gQ

A
4π2 fπ

[
G(Q2)−1

]
, G(Q2) =

2M2

Q2

∫ 1

0

dx
x

log
[

1+ x(1− x)
Q2

M2

]
(5.3)

As we can see, the anomaly is satisfied, but for gQ
A 6= 1 no vanishing at Q2 → ∞ occurs,

Fπ0γγ∗(Q
2) =

1−gQ
A

4π2 fπ
+

gQ
A M2

4π2 fπ

[
log(Q2/M2)

]2

Q2 + . . . (5.4)

In the Spectral Quark Model [18] one has instead

G(Q2) =
1
3

[
2m2

ρ

m2
ρ +Q2 +

m2
ρ

Q2 log
m2

ρ +Q2

mρ

]
, Fπ0γγ∗ =

1−gQ
A

4π2 fπ
+

gQ
A m2

ρ

12π2 fπ

log Q2

m2
ρ

Q2 + . . . (5.5)

With gQ
A = 1 this model fulfills the result of [15] with the mass scale mρ .

Unfortunately, precise chiral-quark-model fits of Fπ0γγ∗ based on above formulas in the whole
Q2 range are not satisfactory, so in the following we proceed to more general analyses based on
Incomplete Vector Meson Dominance (IVMD) [53, 54].

6. Incomplete VMD and Regge models

As shown in the previous Section, it is possible to formulate a field-theoretic model con-
sistent with all formal requirements which violates TW II, leading to an asymptotically constant
Fπ0γγ∗(Q2). With this finding in mind we explore the idea of IVMD and the Regge models. Regge
models with (infinitely many) tree-level meson and glueball exchanges are a realization of the
large-Nc limit which, unlike the current quark models, incorporate confinement and comply with
quark-hadron duality by generating meromorphic two-point functions for color singlet currents.

6
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The simplest IVMD model which comes to mind has just one state saturating the subtracted
dispersion relation for Fπ0γγ∗ . Then

Fπ0γγ∗(Q
2) =

1
4π2 fπ

[
1− c

Q2

M2
V +Q2

]
. (6.1)

The fit to the combined CELLO [55], CLEO [56], and BaBar [1] data yields c = 0.986(2), MV =

748(14) MeV, with χ2/DOF = 0.7, thus (1 − c) is significantly different from 0 although nu-
merically small. On the other hand, the fit to the CLEO data only gives c = 0.998(18), MV =

777(44) MeV, χ2/DOF = 0.54, with (1− c) compatible with 0, or complete VMD. The result of
the fit to the combined data is shown in the left panel of Fig. 3, displaying a remarkable agreement
in the whole experimentally available range. The radius squared

bπ =−

[
1

Fπ0γγ∗(Q)

d
dQ2 Fπ0γγ∗(Q)

]∣∣∣
Q2=0

(6.2)

becomes bπ = c
M2

V
= 1.76(7) GeV−2, compared to the PDG value bπ = (1.76±0.22)GeV−2. The

constrain from the rare Z0 decay is satisfied comfortably, as |FZ→π0γ(M2
Z)/FZ→π0γ(0)|= 0.014(2),

an order of magnitude less than 0.17 of Eq. (2.7).
Next, we consider radial Regge models, with M2

n = M2
V +an, recalling that the large-Nc QCD

involves tree-level diagrams with infinitely many states, including the radial excitations. A particu-
lar realization, the Veneziano-Dominguez model [57, 58], allows to control the asymptotic behavior
of the form factor with a single parameter, b:

Fπ0γγ∗(t) =
1

4π2 fπ
fb(t),

fb(t) =
1

B(b−1, M2
V

a )

∞

∑
n=0

Γ(2−b+n)
Γ(n+1)Γ(2−b)

1
M2

n − t
, (6.3)

where fb(0) = 1, fb(t = −Q2) ∼ (Q2)1−b. The same approach was used in [59] to successfully
describe the pion charge form factor, also at large Q2. Note that b ≤ 1.5 complies to TW II,
while b > 1.5 violates the bound. In the right panel of Fig. 3 we show the results of several
Regge models: the Veneziano-Dominguez model with the fitted value b = 1.81 (dashed line), the
Veneziano-Dominguez model with the first pole separated and fixed b = 1.5 (dotted line), and the
subtracted Regge model (solid line). The details can be found in [32]. We note that the models
differ only at very large values of Q2, where the present experimental uncertainties are large.

Hence, it is possible to explain the BaBar data within the Regge approach, both in the TW II
violating and TW II conserving versions.

Along the lines of the discussion around Eq. (3.1), another adventurous scenario can be pro-
posed, which lies between the one mass state case and the infinitely many uniformly spaced squared
mass states. We can then interpret the constant c for the IVMD ansatz of Eq. (6.1) as corresponding
to a high-mass state, MH , such that for M2

V � Q2 � M2
H one has a Q2-independent behavior. This

can be represented by the simple functional form

Fπ0γγ∗(−Q2) =
1

4π2 fπ

[
c

M2
V

M2
V +Q2 +(1− c)

M2
H

M2
H +Q2

]
, (6.4)

7
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which resembles the IVMD ansatz of Eq. (6.1) in the range M2
V � Q2 � M2

H . A direct fit to the
joint CLEO and BaBar data, with fixed MV = 748 MeV, yields c = 0.085(2) and the lowest bound
(within the 95% confidence level) for the high-mass state is MH ∼ 10 GeV.

7. Photon momentum asymmetry

The last issue we wish to discuss in this talk is the influence of the photon momentum asym-
metry parameter, A. In the BaBar kinematic setup −q2

1 < 0.6 GeV2 and −q2
2 > 3 GeV2, therefore

|A|=
∣∣∣∣q2

1 −q2
2

q2
1 +q2

2

∣∣∣∣∼ 0.9−0.97 6= 1. (7.1)

This turn out to be significant for precision fits and the optimum values of their physical parameters.
In particular, the single-state IMVD model becomes

Fπ0γγ∗(−Q2) =
1

4π2 fπ

[
1− c

(
1− 4M4

V

4M4
V +4M2

V Q2 +(1−A2)Q4

)]
. (7.2)

The fits to the combined data yield for A= 1, 0.975, and 0.95, respectively, c= 0.986, 0.978, 0.974,
MV = 748, 754, 768 MeV. In particular, the value of MV increases toward mρ as A decreases.

8. Conclusions

These are our main conclusions:

• The second Terazawa-West bound, following from assumptions for the real part of the pion
transition form factor, need not be fulfilled in field-theoretic approaches. An explicit counter-
example with the Georgi-Manohar model with gA 6= 1, where the chiral anomaly is fulfilled
but Fπ0γγ∗ tends to a constant at t →−∞. If this feature holds in QCD, it opens a possibil-
ity of solving the BaBar puzzle within models incorporating the incomplete vector-meson
dominance.

• The coefficient in the TW II is large, extending the bound an order of magnitude above the
data. Thus, even if it holds in the absence of polynomial contributions to the real part, it is
completely ineffective for the presently-available momentum range.

• An additional constraint on the models in the time-like region of momenta follows from the
rare Z → π0γ decay. We use this bound in our considerations. For the considered models it
is comfortably satisfied.

• The simplest model realizing the incomplete vector-meson dominance, including a single
vector-meson state, is capable of reproducing the data for Fπ0γγ∗ in the whole available ex-
perimental range, 0 < Q2 < 35 GeV2.

• Within the Regge approach with infinitely many radially excited states, the data can be fitted
both satisfying or violating the TW II bound.

8
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• The precise numerical fits are sensitive to the photon momentum asymmetry parameter, A,
which affect the optimum values of the physical parameters, such as the vector meson mass.
Since A is not strictly 1 in the experimental setup, the effects of kinematic cuts should be
considered in precision analyses.
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