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Hign-Energy Amplitudes in the Next-to-Leading
Order
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High-energy scattering in the saturation region is described by the evolution of color dipoles. In
the leading order this evolution is governed by the non-linear BK equation. To see if this equation
is relevant for existing or future accelerators (like EIC or LHeC) one needs to know how big are
the next-to-leading order (NLO) corrections. I review the calculation of the NLO corrections to
high-energy amplitudes in QCD.
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NLO high-energy amlitudes Ian Balitsky

In the framework of Wilson-line approach, the high-energy behavior of QCD amplitudes is
determined by the rapidity evolution of Wilson lines. The typical example is the deep inelastic
scattering (DIS) at small values of Bjorken x where the xB dependence of structure functions is
governed by the rapidity evolution of color dipoles. (A color dipole is a trace of a two-Wilson-line
operator). At relatively high energies and for sufficiently small dipoles we can use the leading
logarithmic approximation (LLA) where αs� 1, αs lnxB ∼ 1 and get the non-linear BK evolution
equation [1, 2] for the color dipoles Û η(z1,z2):

d
dη

Û η(z1,z2)

=
αsNc

2π2

∫
d2z3

z2
12

z2
13z2

23
[Û η(z1,z3)+ Û η(z3,z2))− Û η(z1,z3)− Û η(z1,z3)Û

η(z3,z2)] (1)

where η = ln 1
xB

and zi are the transverse coordinates of the dipole. The first three terms correspond
to the linear BFKL evolution [3] and describe the parton emission while the last term is responsible
for the parton annihilation. For sufficiently low xB the parton emission balances the parton annihi-
lation so the partons reach the state of saturation with the characteristic transverse momentum Qs

growing with energy 1/xB (for a review, see [4])
As usual, to get the region of application of the leading-order evolution equation one needs to

find the next-to-leading order (NLO) corrections. In the case of the high-energy evolution equation
(1) there is another reason why NLO corrections are important. Unlike the DGLAP evolution, the
argument of the coupling constant in Eq. (1) is left undetermined in the LLA, and usually it is set
by hand to be Qs. The precise form of the argument of αs should come from the solution of the BK
equation with the running coupling constant, and the starting point of the analysis of the argument
of αs in Eq. (1) is the calculation of the NLO evolution.

We calculate the NLO corrections using the high-energy operator expansion of T-product of
two vector currents in Wilson lines (see e.g the reviews [5]). Let us recall the general logic of an
operator expansion. In order to find a certain asymptotical behavior of an amplitude by OPE one
should

• Identify the relevant operators and factorize an amplitude into a product of coefficient func-
tions and matrix elements of these operators

• Find the evolution equations of the operators with respect to the factorization scale

• Solve these evolution equations

• Convolute the solution with the initial conditions for the evolution and get the amplitude.

Since we are interested in the small-x asymptotics of DIS it is natural to factorize in rapidity: we
introduce the rapidity divide η which separates the “fast” gluons from the “slow” ones.

As a first step, we integrate over gluons with rapidities Y > η and leave the integration over
Y < η for later time. It is convenient to use the background field formalism: we integrate over
gluons with α > σ = eη and leave gluons with α < σ as a background field, to be integrated over
later. Since the rapidities of the background gluons are very different from the rapidities of gluons
in our Feynman diagrams, the background field can be taken in the form of a shock wave due to the
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Lorentz contraction. To derive the expression of a quark (or gluon) propagator in this shock-wave
background we represent the propagator as a path integral over various trajectories, each of them
weighed with the gauge factor Pexp(ig

∫
dxµAµ) ordered along the propagation path. Now, since

the shock wave is very thin, quarks (or gluons) do not have time to deviate in transverse direction
so their trajectory inside the shock wave can be approximated by a segment of the straight line.
Moreover, since there is no external field outside the shock wave, the integral over the segment of
straight line can be formally extended to ±∞ limits yielding the Wilson-line gauge factor

Uη
x = Pexp

[
ig
∫

∞

−∞

du pµ

1 Aσ
µ (up1 + x⊥)

]
, Aη

µ(x) =
∫

d4k θ(eη −|αk|)eik·xAµ(k) (2)

where the Sudakov variable αk is defined as usual, k = αk p1 +βk p2 +k⊥. (We define the light-like
vectors p1 and p2 such that q = p1− xB p2 and pN = p2 +

m2
N

s p1 where pN is the nucleon momen-
tum). The structure of the propagator in a shock-wave background looks as follows:[
Free propagation from initial point x to the point of intersection with the shock wave z

]
×
[
Interaction with the shock wave described by the Wilson-line operator Uz

]
×
[
Free propagation from point of interaction z to the final point y

]
.

The explicit form of quark propagator in a shock-wave background can be taken from Ref. [1]

〈ψ̂(x) ¯̂ψ(y)〉 x∗>0>y∗
=

∫
d4z δ (z∗)

(6x− 6z)
2π2(x− z)4 6 p2Uz

(6z− 6y)
2π2(x− z)4 (3)

where we label operators by hats as usual. Hereafter use the notations x∗ = pµ

2 xµ =
√

s
2 x+, x• =

pµ

1 xµ =
√

s
2 x− (and our metric is (1,-1,-1,-1)). Note that the Regge limit in the coordinate space

corresponds to x∗→ ∞,y∗→−∞ while x⊥,y⊥ are fixed, see the discussion in Refs. [6, 7].
As we mentioned above, the result of the integration over the rapidities Y > η gives the impact

factor - the amplitude of the transition of virtual photon in two-Wilson-lines operator - “color
dipole” U η(z1,z2) = 1− 1

Nc
tr{Ûη

z1Û
†η
z2 }. The LO impact factor is a product of two propagators (3)

(x− y)4T{ ¯̂ψ(x)γµ
ψ̂(x) ¯̂ψ(y)γν

ψ̂(y)} =
∫ d2z1d2z2

z4
12

Iµν

LO(z1,z2)tr{Ûz1Û
†
z2
} + O(αs),

ILO
µν (z1,z2) =

R2

π6(κ ·ζ1)(κ ·ζ2)

∂ 2

∂xµ∂yν

[
(κ ·ζ1)(κ ·ζ2)−

1
2

κ
2(ζ1 ·ζ2)

]
. (4)

Here we introduced the conformal vectors [8, 9]

κ =

√
s

2x∗
(

p1

s
− x2 p2 + x⊥)−

√
s

2y∗
(

p1

s
− y2 p2 + y⊥), ζi =

( p1

s
+ z2

i⊥p2 + zi⊥
)
, (5)

and the notation R ≡ κ2(ζ1·ζ2)
2(κ·ζ1)(κ·ζ2)

. The above equation (4) is explicitly Möbius invariant.
In the NLO the coefficient function in front of the operators (1) is not Möbius invariant. As

discussed in Refs. [5, 7, 10], formally the light-like Wilson lines are conformally (Möbius) invariant
but the longitudinal cutoff α < σ = eη in Eq. (1) violates this property. As was demonstrated in
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these papers, one can define a composite operator in the form

[tr{Ûz1Û
†
z2
}
]conf

a = tr{Ûσ
z1

Û†σ
z2
}

+
αs

2π2

∫
d2z3

z2
12

z2
13z2

23
[tr{Ûσ

z1
Û†σ

z3
} tr{Ûσ

z3
Û†σ

z2
}−Nctr{Ûσ

z1
Û†σ

z2
}] ln 4az2

12

σ2sz2
13z2

23
+ O(α2

s ) (6)

where a is an arbitrary constant. It is convenient to choose the rapidity-dependent constant a→
ae−2η so that the [tr{Ûσ

z1
Û†σ

z2
}
]conf

a does not depend on η = lnσ and all the rapidity dependence is
encoded into a-dependence [5, 11]. In terms of composite dipoles (6) the operator expansion has
the form:

T{ ¯̂ψ(x)γµ
ψ̂(x) ¯̂ψ(y)γν

ψ̂(y)} =
∫ d2z1d2z2

z4
12

{
ILO
µν (z1,z2)

[
1 (7)

+
αs

π

]
[tr{Ûz1Û

†
z2
}]a +

∫
d2z3 INLO

µν (z1,z2,z3;a)[tr{Ûz1Û
†
z3
}tr{Ûz3Û

†
z2
}−Nctr{Ûz1Û

†
z2
}]a
}

We need to choose the “new rapidity cutoff” a in such a way that all the energy dependence is
included in the matrix element(s) of Wilson-line operators so the impact factor should not depend
on energy. A suitable choice of a is given by a0 =−κ−2 + iε =− 4x∗y∗

s(x−y)2 + iε so we obtain

(x− y)4T{ ¯̂ψ(x)γµ
ψ̂(x) ¯̂ψ(y)γν

ψ̂(y)} (8)

=
∫ d2z1d2z2

z4
12

{
Iµν

LO(z1,z2)
[
1+

αs

π

]
[tr{Ûz1Û

†
z2
}]a0 +

∫
d2z3

[
αs

4π2
z2

12

z2
13z2

23

×
(

ln
κ2(ζ1 ·ζ3)(ζ1 ·ζ3)

2(κ ·ζ3)2(ζ1 ·ζ2)
−2C

)
Iµν

LO + Iµν

2

]
[tr{Ûz1Û

†
z3
}tr{Ûz3Û

†
z2
}−Nctr{Ûz1Û

†
z2
}]a0

}
Here the composite dipole [tr{Ûσ

z1
Û†σ

z2
}]a0 is given by Eq. (6) with a0 =− 4x∗y∗

s(x−y)2 + iε and

Iµν

2 (z1,z2,z3) is given by [12]

(I2)µν(z1,z2,z3) (9)

=
αs

16π8
R2

(κ ·ζ1)(κ ·ζ2)

{
(κ ·ζ2)

(κ ·ζ3)

∂ 2

∂xµ∂yν

[(κ ·ζ1)(κ ·ζ2)

(ζ2 ·ζ3)
+

(κ ·ζ1)(κ ·ζ3)(ζ1 ·ζ2)

(ζ1 ·ζ3)(ζ2 ·ζ3)

− (κ ·ζ1)
2

(ζ1 ·ζ3)
− κ2(ζ1 ·ζ2)

(ζ2 ·ζ3)

]
+

(κ ·ζ2)
2

(κ ·ζ3)2
∂ 2

∂xµ∂yν

[(κ ·ζ1)(κ ·ζ3)

(ζ2 ·ζ3)
− κ2(ζ1 ·ζ3)

2(ζ2 ·ζ3)

]
+(ζ1↔ ζ2)

}
The second step of the OPE program is the evolution equation(s) of color dipole with respect

to rapitity (≡ our parameter a). The calculation performed in Refs. [10, 11] yields

2a
d
da

[
tr{Ûz1Û

†
z2
}
]

a (10)

=
αs

2π2

∫
d2z3

z2
12

z2
13z2

23

[
tr{Ûz1Û

†
z3
}tr{Ûz3Û

†
z2
}−Nctr{Ûz1Û

†
z2
}
]

a

{
1+

αs

4π

[
b(ln

z2
12µ2

4
+2C)

−b
z2

13− z2
23

z2
12

ln
z2

13

z2
23

+
(67

9
− π2

3
)
Nc−

10
9

n f

]}
+

α2
s

16π4

∫ d2z3d2z4

z4
34

[{(
−2+ 2

z2
12z2

34

z2
13z2

24
ln

z2
12z2

34

z2
14z2

23

+
[z2

12z2
34

z2
13z2

24

(
1+

z2
12z2

34

z2
13z2

24− z2
14z2

23

)
+

2z2
13z2

24−4z2
12z2

34

z2
13z2

24− z2
14z2

23

]
ln

z2
13z2

24

z2
14z2

23

)
+
(
z3↔ z4

)}

4
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×
[(

tr{Ûz1Û
†
z3
}tr{Ûz3Û

†
z4
}tr{Ûz4Û

†
z2
}− tr{Ûz1Û

†
z3

Ûz4Û
†
z2

Ûz3Û
†
z4
}
)
− (z4→ z3)

]
a +

z2
12z2

34

z2
13z2

24

×
{

2ln
z2

12z2
34

z2
14z2

23
+
[
1+

z2
12z2

34

z2
13z2

24− z2
14z2

23

]
ln

z2
13z2

24

z2
14z2

23

}[
tr{Ûz1Û

†
z3
}tr{Ûz3Û

†
z4
}tr{Ûz4Û

†
z2
}− z3↔ z4

]
a

]

+
α2

s n f

2π4

∫ d2z3d2z4

z4
34

{
2−

z2
13z2

24 + z2
23z2

14− z2
12z2

34

z2
13z2

24− z2
14z2

23
ln

z2
13z2

24

z2
14z2

23

}
[tr{taÛz1t

bÛ†
z2
}tr{taÛz3t

b(Û†
z4
−Ûz3)}]a

This kernel is a sum of the conformal part and the running coupling part proportional to b =
11
3 Nc− 2

3 n f . It is worth noting that the linearization of this equation agrees with NLO BFKL kernel
[13].

I will not discuss here the steps 3 and 4 of our OPE program. The reason is that in DIS from
nucleon or nucleus the evolution of color dipoles is non-linear and the analytic solution is not
known at the present time. Even in the simpler case of forward γ∗γ∗ or onium-onium scattering
where the dipole evolution is described by linear NLO BFKL equation, it is impossible to solve
this equation since we do not know the argument of the coupling constant. Moreover, it is not
known how to solve analytically this equation even if we take some simple model for the argument
of coupling constant like the size of the parent dipole.

Still, the first step towards the solution would be to figure out the argument of coupling constant
in the NLO BFKL equation. To get an argument of coupling constant we can use the renormalon-
based approach and trace the quark part of the β -function proportional to n f . In the leading log
approximation αs ln p2

µ2 ∼ 1, αs� 1 the quark part of the β -function comes from the bubble chain of

quark loops in the shock-wave background. Replacing the quark part of the β -function− αs
6π

n f ln p2

µ2

by the total contribution αs
4π

b ln p2

µ2 we get [14, 15]

2a
d
da

Tr{Ûz1Û
†
z2
} =

αs(z2
12)

2π2

∫
d2z [Tr{Ûz1Û

†
z3
}Tr{Ûz3Û

†
z2
}−NcTr{Ûz1Û

†
z2
}] (11)

×
[ z2

12

z2
13z2

23
+

1
z2

13

(
αs(z2

13)

αs(z2
23)
−1
)
+

1
z2

23

(
αs(z2

23)

αs(z2
13)
−1
)]

+ ...

where dots stand for the remaining α2
s terms irrelevant for the argument of αs in the BK equation.

When the sizes of the dipoles are very different the kernel of the above equation reduces to

αs(z2
12)

2π2
z2

12

z2
13z2

23
|z12| � |z13|, |z23|,

αs(z13)
2)

2π2z2
13
|z13� |z12|, |z23|,

αs(z23)
2)

2π2z2
23
|z23| � |z12|, |z13|(12)

so the argument of the coupling constant is the size of smallest dipole. The numerical approach to
solution of the the NLO BK equation with this running coupling constant is presented in Ref. [16].

The main conclusion is that the rapidity factorization and high-energy operator expansion in
color dipoles works at the NLO level. There are many examples of the factorization which are fine
at the leading order but fail at the NLO level. I believe that the high-energy OPE has the same
status as usual light-cone expansion in light-ray operators so one can calculate the high-energy
amplitudes level by level in perturbation theory. There are many papers devoted to analysis of
the high-energy amplitudes in QCD at the NLO level but all of them use traditional calculation
of Feynman diagrams in momentum space. In our opinion, the high-energy OPE in color dipoles
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is technically more simple and gives us an opportunity to use an approximate tree-level conformal
invariance in QCD. Moreover, the exact prescription for separating the coefficient functions (impact
factors) and matrix elements is somewhat tricky in the traditional approach while it comes naturally
in the framework of OPE logic.
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