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We summarise predictions for tt̄bb̄ production at the LHC in next-to-leading order QCD. The pre-

cise description of this background process is a prerequisite to observe associated tt̄H production

in the H→ bb̄ decay channel. The one-loop amplitudes are computed usingFeynman diagrams

and numerical tensor reduction. This approach provides very high numerical stability and CPU

efficiency. We find that the scale choice adopted in ATLAS simulations underestimates the tt̄bb̄

background by a factor two and introduce a new dynamical scale that stabilises the perturbative

predictions. In the regime of highly boosted Higgs bosons, which offers better perspectives to

observe the t̄tH(H → bb̄) signal, the corrections induce significant distortions in the kinematic

distributions.
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1. Introduction

The discovery of the Higgs boson and the measurement of its couplings represent a central goal
of the Large Hadron Collider (LHC). For a light Higgs boson,MH

<∼ 130GeV, associated tt̄H(H →
bb̄) production provides the opportunity to measure the top-quark Yukawa coupling. However,
the extraction of this signal from its large QCD backgrounds, pp→ tt̄bb̄ and t̄tjj, represents a
serious challenge. The selection strategies elaborated byATLAS and CMS [1, 2] anticipate a
statistical significance around 2σ and a signal-to-background ratio as low as 1/10. This calls for
better than 10% precision in the background description, a very demanding requirement both from
the experimental and theoretical point of view. Recently, anovel selection strategy based on highly
boosted Higgs bosons has opened new and very promising perspectives [3], suggesting an increase
in the signal-to-background ratio beyond 1/3.

The calculation of the next-to-leading-order (NLO) QCD corrections to the irreducible tt̄bb̄
background, first presented in Refs. [4, 5, 6] and subsequently confirmed in Ref. [7], constitutes
another important step towards the observability of tt̄H(H → bb̄) at the LHC. These NLO predic-
tions are mandatory in order to reduce the huge scale uncertainty of the lowest-order (LO) t̄tbb̄
cross section, which can vary up to a factor four if the QCD scales are identified with different
kinematic parameters [8]. In the following we give a brief account of our calculation of NLO QCD
corrections to pp→ tt̄bb̄ and refer to the original papers [4, 5, 6] for more details and results.

The calculation of the NLO corrections to pp→ tt̄bb̄ constitutes also an important technical
benchmark. The description of many-particle processes at NLO plays a central role for the LHC
physics programme, and the technical challenges raised by these calculations have triggered an
impressive amount of conceptual and technical developments. Within the last year, this progress
has lead to the first NLO results for six-particle processes at the LHC, namely for pp→ tt̄bb̄ [5, 7],
pp→ tt̄jj [9], for the leading- [10] and the full-colour contributions [11] to pp→ Wjjj, for pp →
Z/γ jjj [12], for the qq̄ contribution to pp→ bb̄bb̄ [13], and for the QCD-induced production of
W+W+jj final states [14].

2. Outline of the calculation

In LO, the hadronic production of tt̄bb̄ proceeds via the partonic processesqq̄ → tt̄bb̄ and
gg→ tt̄bb̄, which are described by 7 and 36 tree diagrams, respectively. The corresponding virtual
NLO QCD corrections involve 188 and 1003 one-loop diagrams.The real emission contributions
comprise the crossing-symmetric channelsqq̄→ tt̄bb̄g,qg→ tt̄bb̄q, and gq̄→ tt̄bb̄q̄, which involve
64 tree diagrams each, and the channel gg→ tt̄bb̄g with 341 diagrams. Each of these contributions
has been worked out twice and independently, resulting in two completely independent computer
codes.

The virtual corrections are calculated in the Feynman-diagrammatic approach. The diagrams
are generated with two independent versions of FEYNARTS [16] and algebraically simplified with
two in-house MATHEMATICA programs that generate FORTRAN77 code in a fully automatised
way. One of the two programs relies on FORMCALC 5.2 [17] for preliminary algebraic manipu-
lations. The virtual corrections are obtained from the interference of the one-loop and LO matrix
elements on a diagram-by-diagram basis.
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Owing to colour factorisation for individual (sub)diagrams colour sums can be performed very
efficiently. The colour-summed result is given by a combination of previously computed colour–
Born interference terms. This requiresa single evaluationof the non-trivial colour-stripped ampli-
tude of each (sub)diagram. Helicity structures are handledin a similar way. The helicity-dependent
parts of all diagrams are reduced to a common basis of so-called Standard Matrix Elements (SMEs),
and helicity sums are performed once and for all at the level of the SMEs–Born interference. The
diagram-independent treatment of the helicity-dependentparts of loop graphs is made possible by
the covariant decomposition of tensor integrals.

The one-loop amplitudes are expressed as linear combinations of tensor-integral coefficients.
The latter are evaluated by two independentnumericalFORTRAN libraries that recursively reduce
them to master integrals using the methods of Ref. [15]. Avoiding an explicit reduction of analytic
expressions to master integrals, this numerical approach prevents prohibitively large expressions
and permits to adapt the reduction strategy to the specific numerical problems that appear in dif-
ferent phase-space regions. An automatic cache system is implemented that strongly boosts the
reduction by recycling a multitude of tensor integrals among Feynman diagrams with common
sub-topologies.

Ultraviolet (UV) divergences are regularized dimensionally throughout, but infrared (IR) di-
vergences are treated in different variants, which comprise pure dimensional regularization with
strictly massless light quarks and a hybrid scheme with small quark masses. The corresponding
scalar integrals are evaluated using the methods and results of Ref. [18, 19], and different regular-
ization schemes are translated into each other as describedin Ref. [20]. The treatment of rational
parts is greatly simplified by the fact that rational terms resulting from 1/ε and 1/ε2 poles of IR
kind vanish in truncated one-loop amplitudes [4]. Rationalterms arising from UV poles of ten-
sor integrals withD-dependent coefficients are automatically extracted by means of a catalogue of
residues.

To handle singularities in the real corrections we employedthe dipole subtraction method [21],
in particular the MADDIPOLE implementation [22] in one of our calculations. The 2→ 5 matrix
elements were generated with MADGRAPH [23] and checked against analytic calculations with the
Weyl–van der Waerden spinor formalism and in-house code based on off-shell recursions.

3. Predictions for the LHC

We study the process pp→ tt̄bb̄+ X at
√

s = 14TeV with mt = 172.6GeV and massless
b quarks. Massless final-state partons with rapidity–azimuthal-angle separation

√

∆φ2 +∆y2 <

D = 0.4 are recombined into jets using akT-algorithm, and we require two b jets withpT,b > 20GeV
and |yb| < 2.5. We use the CTEQ6 set of PDFs but neglect the suppressed contributions from
b quarks in the initial state. More details are given in Ref. [6].

In all recent ATLAS studies of t̄tH(H → bb̄) [1, 8, 24] the signal and its tt̄bb̄ background were
simulated by setting the renormalisation and factorisation scales equal to half the threshold energy,
Ethr = 2mt +mbb̄. In Ref. [5] we found that for this scale choice the NLO corrections to pp→ tt̄bb̄
are close to a factor of two. This enhancement is due to the fact that pp→ tt̄bb̄ is a multi-scale
process involving various scales well belowEthr/2. The inspection of differential distributions
reveals that the cross section is saturated by b quarks withpT,b ≪ mt. Therefore we introduced in
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Figure 1: Scale dependence of the LO and NLO pp→ tt̄bb̄+ X cross section. The left and the right plots
describe uniform (ξR = ξF = ξ ) and antipodal (ξR = ξ−1

F = ξ ) scale variations, respectively.
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Figure 2: Invariant-mass distribution of the b̄b pair: absolute LO and NLO predictions (left) and NLOK
factor (right).

Ref. [6] the dynamical scaleµ2
0 = mt

√pT,bpT,b̄, which improves the perturbative convergence and
minimises NLO effects in the shape of distributions.

Using this dynamical scale, we discussed in Ref. [6] the kinematic regionmbb̄ > 100GeV and
found that for all distributions considered the NLO corrections are at the level of 20–30% and have
relatively little impact on the shape of distributions. On the other hand, the corrections still induce
significant distortions of the kinematic distributions in the regime of a highly boosted Higgs boson.
Here we provide some results for this scenario withpT,bb̄ > 200GeV.

In Figure 1 we show the scale dependence of the LO and NLO integrated cross sections.
Renormalisation (µR) and factorisation (µF) scales are varied around the central value,µR = ξRµ0,
µF = ξFµ0 in a uniform (ξF = ξR) and antipodal (ξF = ξ−1

R ) way in the range 1/8≤ ξF,ξR ≤ 8. At
the central scale we obtainσLO = 451.8(2) fb andσNLO = 592(4) fb corresponding toK = 1.31.
The shape of the scale-dependence curves indicates good convergence and stability of the pertur-
bative expansion. The shifts induced by factor-two variations of the QCD scales amount to 79% in
LO and 22% in NLO.
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The b̄b invariant-mass distribution is displayed in Figure 2 where the LO and NLO uncertainty
bands result form factor-two uniform scale variations, which have a larger impact as antipodal vari-
ations. More precisely, the distributions are evaluated atthree different scales:ξF = ξR = 0.5,1,2.
The NLO corrections induce an appreciable shape distortionof about 20%, in particular near the
physically interesting region ofmbb̄ ∼ 100GeV. Such an effect tends to mimic a Higgs signal and
should be carefully taken into account in the tt̄H(H → bb̄) analysis. For other distributions the
shape distortion is not as sizeable.
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