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Exclusive electroproduction of vector mesons is a crucial way to probe QCD factorization prop-

erties. Such a factorization is up to now only proven, at the twist 2 level, for a longitudinaly

polarized meson. It is crucial to extend our understanding to the case of transversely polarized

vector mesons. As a first step in this direction, we evaluate the impact factor of the transition

γ∗→ ρT , which is the relevant part of the amplitude within thekt -factorization approach valid at

large energies, taking into account the twist 3 contributions, coming both from quark antiquark

and from quark antiquark gluon correlators. We show that a gauge invariant expression is obtained

with the help of QCD equations of motion.
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1. Introduction

The factorization properties of the leading twist amplitudes allow to study deep exclusive me-
son electroproduction [1], when the meson is (pseudo)scalar or longitudinally polarized. The case
of a transversely polarized vector meson is more involved since the chiral-oddity of its leading
twist distribution amplitude (DA) leads to its decoupling in leading twist electroproduction am-
plitudes [2] unless in reactions with more than two final hadrons [3]. To understand available
data [4], one thus needs to consider carefully all twist 3 contributions. The meson quark gluon
structure within collinear factorization may be described by Distribution Amplitudes (DAs), clas-
sified in [5]. We consider here the case of very high energy collisions atelectron proton or electron
positron colliders [6, 7]. In the literature there are two approaches to the factorization of the scat-
tering amplitudes in exclusive processes at leading and higher twists. The Light-Cone Collinear
Factorization (LCCF) [8,9] extends the inclusive approach [10] to exclusive processes, dealing with
the factorization in the momentum space around the dominant light-cone direction, while the Co-
variant Collinear Factorization (CCF) approach in coordinate space wassuccesfully applied in [5]
for a systematic description of DAs of hadrons carrying different twists.We show [11] that these
two descriptions are equivalent at twist 3. For that, we perform our analysis within LCCF method in
momentum space. It introduces relevant soft correlators which are generally not independent ones.
The correlators are reduced to a minimal independent set with the use of equation of motions and of
the light-cone-fixing vector independence condition. A dictionary is obtainedbetween LCCF and
CCF correlators, proving the equivalence between LCCF and CCF approaches. We illustrate this
equivalence by calculating up to twist 3 accuracy within both methods the impactfactorγ∗→ ρT ,
which enters the description of theγ∗ p→ ρ p andγ∗ γ → ρ ρ processes at larges.

2. LCCF factorization of exclusive processes

The amplitude for the exclusive processA→ ρ B is, in the momentum representation and in
axial gauge reads (H andHµ are 2- and 3-parton coefficient functions, respectively)

A =
∫

d4ℓ tr

[

H(ℓ)Φ(ℓ)

]

+
∫

d4ℓ1d4ℓ2 tr

[

Hµ(ℓ1, ℓ2)Φµ(ℓ1, ℓ2)

]

+ . . . . (2.1)

In (2.1), the soft partsΦ are the Fourier-transformed 2- or 3-parton correlators which are matrix
elements of non-local operators. To factorize the amplitude, we choose thedominant direction
around which we decompose our relevant momenta and we Taylor expand the hard part. Letp∼ pρ

andn be two light-cone vectors (p·n = 1). Any vectorℓ is then expanded as

ℓi µ = yi pµ +(ℓi · p)nµ + ℓ⊥i µ , yi = ℓi ·n, (2.2)

and the integration measure in (2.1) is replaced asd4ℓi −→ d4ℓi dyi δ (yi−ℓ ·n). The hard partH(ℓ)

is then expanded around the dominantp direction:

H(ℓ) = H(yp)+
∂H(ℓ)

∂ℓα

∣

∣

∣

∣

ℓ=yp
(ℓ−y p)α + . . . (2.3)

where(ℓ−y p)α ≈ ℓ⊥α up to twist 3. To obtain a factorized amplitude, one performs an integration
by parts to replaceℓ⊥α by ∂⊥α acting on the soft correlator. This leads to new operators containing
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transverse derivatives, such asψ̄ ∂⊥ψ , thus requiring additional DAsΦ⊥(l). Factorization is then
achieved by Fierz decomposition on a set of relevant DiracΓ matrices, and we end up with

A = tr [Hqq̄(y)Γ]⊗ΦΓ
qq̄(y)+ tr

[

H⊥µ
qq̄ (y)Γ

]

⊗Φ⊥Γ
qq̄µ(y)+ tr

[

Hµ
qq̄g(y1,y2)Γ

]

⊗ΦΓ
qq̄gµ(y1,y2) , (2.4)

where⊗ is they-integration. Although the fields coordinateszi are on the light-cone in both LCCF
and CCF parametrizations of the soft non-local correlators,zi is alongn in LCCF while arbitrary
in CCF. The transverse physical polarization of theρ−meson is defined by the conditions

eT ·n = eT · p = 0. (2.5)

Keeping all the terms up to the twist-3 order with the axial (light-like) gauge,n ·A = 0, the matrix
elements of quark-antiquark nonlocal operators for vector and axial-vector correlators without and

with transverse derivatives, with
←→

∂ρ = 1
2(
−→

∂ρ −
←−

∂ρ ) , can be written as (here,z= λn)

〈ρ(pρ)|ψ̄(z)γµψ(0)|0〉 = mρ fρ

∫ 1

0
dyexp[iy p·z]

[

ϕ1(y)(e∗ ·n)pµ +ϕ3(y)e∗Tµ
]

, (2.6)

〈ρ(pρ)|ψ̄(z)γµ i
←→

∂ T
α ψ(0)|0〉 = mρ fρ

∫ 1

0
dyexp[iy p·z]ϕT

1 (y) pµe∗Tα , (2.7)

〈ρ(pρ)|ψ̄(z)γ5γµψ(0)|0〉 = mρ fρ i
∫ 1

0
dyexp[iy p·z]ϕA(y)εµαβδ e∗αT pβ nδ , (2.8)

〈ρ(pρ)|ψ̄(z)γ5γµ i
←→

∂ T
α ψ(0)|0〉 = mρ fρ i

∫ 1

0
dyexp[iy p·z]ϕT

A (y) pµ εαλβδ e∗λT pβ nδ , (2.9)

wherey (ȳ) is the quark (antiquark) momentum fraction. Two analogous correlators are needed to
describe gluonic degrees of freedom, introducingB andD DAs according to

〈ρ(pρ)|ψ̄(z1)γµgAT
α(z2)ψ(0)|0〉 = mρ fV

3ρ

1
∫

0

dy1

1
∫

0

dy2eiy1 p·z1+i(y2−y1) p·z2 B(y1,y2)pµe∗Tα , (2.10)

〈ρ(pρ)|ψ̄(z1)γ5γµgAT
α(z2)ψ(0)|0〉 = mρ f A

3ρ

1
∫

0

dy1

1
∫

0

dy2eiy1 p·z1+i(y2−y1) p·z2 iD(y1,y2)

×pµ εαλβδ e∗λ
T pβ nδ . (2.11)

One thus needs 7 DAs:ϕ1 (twist-2), B andD (genuine (dynamical) twist-3) andϕ3, ϕA,ϕT
1 , ϕT

A

(kinematical (à la Wandzura-Wilczek) twist-3 and genuine (dynamical) twist-3).
These DAs are not independent. They are related by 2 Equations of Motions (EOMs) and

2 equations arising from the invariance ofA under the arbitrary vectorn, which comes from 3
sources. First, it enters the definition of the non-local correlators through the light-like separation
z= λ n. These correlators are defined in the axial light-like gaugen·A= 0, which allows to get rid
of Wilson lines. Second, it determines the notion of transverse polarization of theρ . Last,n enters
the Sudakov decomposition (2.2) which defines the transverse parton momentum involved in the
collinear factorization. One can in fact show that the hard part does notdepend on the gauge fixing
vectorn. Therefore, only the second and third source ofn−dependence should be investigated.
Based on Ward identities, thisn−dependence ofA can be recast in a system of constraints which
only involve the soft part. We thus have only 3 independent DAsϕ1 , B andD, which fully encode
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the non-perturbative content of theρ at twist 3.
The original CCF parametrizations of theρ DAs [5] also involve 3 independent DAs, defined

through 4 correlators related by EOMs. The 2-parton axial-vector correlator reads,

〈ρ(pρ)|ψ̄(z) [z, 0]γµγ5ψ(0)|0〉=
1
4

fρ mρ ε αβγ
µ e∗Tα pβ zγ

1
∫

0

dyeiy(p·z) g(a)
⊥ (y) , (2.12)

[z1, z2] = Pexp

[

ig
1
∫

0
dt (z1−z2)µAµ(t z1 +(1− t)z2)

]

being the Wilson line. Denoting the meson

polarization vector bye, eT is here defined to be orthogonal to the light-cone vectorsp andz:

eTµ = eµ − pµ
e·z
p·z
−zµ

e· p
p·z

. (2.13)

Thus eT (2.13) in CCF andeT (2.5) in LCCF differ sincez does not generally point in then
direction. The 2-parton vector correlator reads (up to twist 3)

〈ρ(pρ)|ψ̄(z) [z, 0]γµψ(0)|0〉= fρ mρ

1
∫

0

dyeiy(p·z)
[

pµ
e∗ ·z
p·z

φ‖(y)+e∗Tµ g(v)
⊥ (y)

]

. (2.14)

The 3-parton correlators are parametrized (up to twist 3 level) accordingto

〈ρ(pρ)|ψ̄(z)[z, t z]γαgGµν(t z)[t z,0]ψ(0)|0〉 = −ipα [pµe∗⊥ν − pνe∗⊥µ ]mρ fV
3ρ

×
∫

Dα V(α1,α2)eip·z(α1+ t αg) , (2.15)

〈ρ(pρ)|ψ̄(z)[z, t z]γαγ5gG̃µν(t z)[t z,0]ψ(0)|0〉 = −pα [pµe∗⊥ν − pνe∗⊥µ ]mρ f A
3ρ

×
∫

Dα A(α1,α2)ei p·z(α1+ t αg) , (2.16)

whereα1, α2, αg are momentum fractions of quark, antiquark and gluon respectively insidethe

ρ−meson,
∫

Dα =
1
∫

0
dα1

1
∫

0
dα2

1
∫

0
dαg δ (1−α1−α2−αg) andG̃µν =−1

2εµναβ Gαβ . A comparison

of the correlators (2.6, 2.7, 2.8, 2.9, 2.10, 2.11) and (2.12, 2.14, 2.15, 2.16) in the axial gaugen·A=

0 gives the following identification of the 2- and 3-parton DAs in LCCF and CCF approaches:

ϕ1(y) = φ‖(y), ϕ3(y) = g(v)
⊥ (y) , ϕA(y) =−

1
4

∂g(a)
⊥ (y)

∂y
, (2.17)

B(y1, y2) =−
V(y1, 1−y2)

y2−y1
D(y1, y2) =−

A(y1, 1−y2)

y2−y1
. (2.18)

3. γ∗→ ρT Impact factor up to twist three accuracy in LCCF and CCF

We have calculated, in both LCCF and CCF, the forward impact factorΦγ∗→ρ of the subpro-
cessg+ γ∗→ g+ ρT , defined as the integral of the discontinuity in thes channel of the off-shell
S-matrix elementS γ∗T g→ρT g

µ . In LCCF, one computes the diagrams perturbatively in a fairly di-
rect way, which makes the use of the CCF parametrization [5] less practical.We need to express
the impact factor in terms of hard coefficient functions and soft parts parametrized by the light-
cone matrix elements. The standard technique here is an operator productexpansion on the light
cone, which gives the leading term in the power counting. Since there is no operator definition for
an impact factor, we have to rely on perturbation theory. The primary complication encountered is
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that thez2→ 0 limit of any single diagram is given in terms of light-cone matrix elements with-
out any Wilson line insertion between the quark and gluon operators (”perturbative correlators“),
like 〈ρ(pρ)|ψ̄(z)γµψ(0)|0〉 . Despite working in the axial gauge one cannot neglect effects coming
from the Wilson lines since the two light cone vectorsz andn are not identical and thus, gener-
ically, Wilson lines are not equal to unity. Nevertheless in the axial gauge thecontribution of
each additional parton costs one extra power of 1/Q, allowing the calculation to be organized in
a simple iterative manner expanding the Wilson line. At twist 3, we need to keep the contribution

[z,0] = 1+ ig
1
∫

0
dt zαAα(zt) and to care about the difference between the physicalρT-polarization

(2.5) from the formal one (2.13). At twist 3-level the net effect of the Wilson line when computing
our impact factor is just a renormalization of the DAga

⊥ of (2.12), and similarly for the vector case.
We are then able to show that our two LCCF and CCF results are identical; the result is gauge
invariant due to a consistent inclusion of fermionic and gluonic degrees offreedom and it is free of
end-point singularities, due to thekT regulator.

This establishes a consistent gauge invariant analysis of electroproduction of transversely po-
larized vector mesons at high energy. An extension of this work to lower energy regime where
collinear factorization allows to write the amplitude in terms of generalized parton distributions is
under way.

This work is partly supported by the grant ANR-06-JCJC-0084, the RFBR (grants 09-02-
01149, 09-02-00263, 08-02-00896), the grant NSh-3810.2010.2and the Polish Grant N202 249235.
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