Search for the $\xi(2220)$ and Study of the $X(3872)$ at BABAR

Arafat Gabareen Mokhtar* ${ }^{* \dagger}$

SLAC National Accelerator Laboratory
E-mail: mokhtar@slac.stanford.edu

The BABAR Collaboration performed a search for $\xi(2220)$ production in the initial-state radiation process $e^{+} e^{-} \rightarrow \gamma J / \psi, J / \psi \rightarrow \gamma K^{+} K^{-}$or $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$. No evidence for the $\xi(2220)$ resonance has been found. The 90% confidence level upper limits on the product of branching fractions are sensitive to the spin and helicity hypotheses. These upper limits are of the order 10^{-5}, below the values reported in previous experiments. Also at $B A B A R$, the decays $B \rightarrow J / \psi \pi^{+} \pi^{-} \pi^{0} K$ are studied to search for the decay $X(3872) \rightarrow J / \psi \omega$. This search yields a four standard deviation evidence for $X(3872) \rightarrow J / \psi \omega$, with product branching fractions of $\mathscr{B}\left(B^{+} \rightarrow X(3872) K^{+}\right) \times \mathscr{B}(X(3872) \rightarrow J / \psi \omega)=[0.6 \pm 0.2($ stat $) \pm 0.1($ syst $)] \times 10^{-5}$, and $\mathscr{B}\left(B^{0} \rightarrow X(3872) K^{0}\right) \times \mathscr{B}(X(3872) \rightarrow J / \psi \omega)=[0.6 \pm 0.3($ stat $) \pm 0.1($ syst $)] \times 10^{-5}$. A detailed study of the $\pi^{+} \pi^{-} \pi^{0}$ mass distribution from $X(3872)$ decay favors a negative-parity assignment but does not rule out the positive-parity hypothesis.

[^0]
1. Introduction

The $\xi(2220)$ resonance is a glue-ball candidate whose existence is not yet established. The $X(3872)$ has been observed in several decay modes and by several Collaborations. However, the nature of the $X(3872)$ is still not yet understood. We present the BABAR results on the search for $\xi(2220)$ in radiative J / ψ decays [1], and on the evidence for the decay $X(3872) \rightarrow J / \psi \omega$ [2].

2. Search for $\boldsymbol{\xi}(2220)$ in Radiative J / ψ Decays

In 1986, the Mark III Collaboration reported [3] a narrow resonance with a mass of ~ 2.2 GeV / c^{2} in the radiative decay $J / \psi \rightarrow \gamma \xi(2220), \xi(2220) \rightarrow K^{+} K^{-}$and $\xi(2220) \rightarrow K_{S}^{0} K_{S}^{0}$. A 3.6 and 4.7 standard deviation significance for $J / \psi \rightarrow \gamma K^{+} K^{-}$and $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ modes were reported. The BES Collaboration also reported evidence for the $\xi(2220)$ in J / ψ radiative decays at a comparable level of significance [4]. Moreover, there are indications for a similar structure in $\pi^{-} p$ and $K^{-} p$ collisions [5, 6, 7]. On the other hand, searches for $\xi(2220)$ in $p \bar{p}$ collisions [8, 9], or two photon production [10, 11], have been inconclusive.

In a recent BABAR search [1], the initial-state radiation (ISR) events $e^{+} e^{-} \rightarrow \gamma_{\text {ISR }} J / \psi, J / \psi \rightarrow$ $\gamma K K$ ($K K$ indicates $K^{+} K^{-}$or $K_{S}^{0} K_{S}^{0}$), were studied to search for the $\xi(2220)$. The BABAR data sample is equivalent to an integrated luminosity of $460 \mathrm{fb}^{-1}$, recorded at or slightly below 10.58 GeV .

The $\gamma K^{+} K^{-}$and $\gamma K_{S}^{0} K_{S}^{0}$ mass distributions are shown in Fig. 1, where a large J / ψ signal is observed in both decay modes. The background under the signal arises mainly from partially reconstructed $J / \psi \rightarrow K K X$ or $e^{+} e^{-} \rightarrow q \bar{q} \gamma_{\text {ISR }}$ events, where X can be any final state system and $q=u, d, s, c$. The $\gamma K K$ candidates are required to originate from a common vertex and are kinematically constrained to the J / ψ nominal mass. Each K_{S}^{0} candidate in the decay $J / \psi \rightarrow \gamma K_{S}^{0} K_{S}^{0}$ is reconstructed from two oppositely charged tracks identified as pions. The photon emitted from the J / ψ has a minimum energy of 300 MeV .

The $K^{+} K^{-}$and $K_{S}^{0} K_{S}^{0}$ mass distributions are shown in Fig. 2. The inclusive background and background events corresponding to $J / \psi \rightarrow \gamma f_{2}^{\prime}(1525)$ and $J / \psi \rightarrow \gamma f_{0}(1710)$, are present. The small data excess at $\sim 1.25 \mathrm{GeV} / c^{2}$ in the charged mode may be due to the process $J / \psi \rightarrow \rho^{0} \pi^{0}$, with $\rho^{0} \rightarrow \pi^{+} \pi^{-}$, where both pions are misidentified as kaons, and one of the photons from the π^{0} is undetected. To extract the $\xi(2220)$ yield, unbinned-maximum likelihood fits in the range $1.9 \leq$ $m_{K K} \leq 2.6 \mathrm{GeV} / c^{2}$ are performed. The signal is described as a Breit-Wigner function convolved with a Gaussian resolution function. The background is parametrized as a second-order Chebychev polynomial. Both the mass and width of the $\xi(2220)$ are fixed. There is no evidence for $\xi(2220)$ state. The upper limits on the product of branching fractions depend on the spin and helicity assignment. For all hypotheses of spin and helicity, the 90% confidence level upper limits for the $J / \psi \rightarrow \gamma \xi(2220), \xi(2220) \rightarrow K K$ product branching fractions are in the range $(1.2-3.6) \times 10^{-5}$, smaller or close to the values reported by the Mark III Collaboration.

3. Evidence for $X(3872) \rightarrow J / \psi \omega$

With the discovery [12] of the $X(3872)$ by the Belle Collaboration in 2003, interest in charmonium spectroscopy has been renewed. Confirmation of this state was obtained by CDF, D0, and

Figure 1: The mass distribution of (a) $\gamma K^{+} K^{-}$and (b) $\gamma K_{S}^{0} K_{S}^{0}$ for the final sample. The dots represent the data and the histograms show the fits to the data when requiring a fit probability above 0.01 . The shaded histograms represent the estimated background.

Figure 2: The fitted mass distribution for (a) $K^{+} K^{-}$and (b) $K_{S}^{0} K_{S}^{0}$. The contributions of the inclusive background (open histograms), $J / \psi \rightarrow \gamma f_{2}^{\prime}(1525)$ (cross hatched histograms), and $J / \psi \rightarrow \gamma f_{0}(1710)$ (hatched histograms) are shown. The insets show the fit results in the $\xi(2220)$ region.

BABAR experiments $[13,14,15,16,17]$. Since then, several other charmonium-like states have been discovered [18]. The $X(3872)$ is the most-studied state and the only one which has been identified in more than one decay mode, assuming that the reported X, Y, and Z states are actually different states. A great deal of effort has been expended to understand the nature of the $X(3872)$ especially its spin-parity assignment $\left(J^{P C}\right)$. So far, $J^{P C}=1^{++}$or 2^{-+}can be assigned to the $X(3872)$. The radiative decays $X(3872) \rightarrow \gamma J / \psi[19,20,21]$ and $X(3872) \rightarrow \gamma \psi(2 S)[21]$ indicate positive C parity. At BABAR, no charged-partner for the $X(3872)$ has been observed [22]. This establishes $I=0$.

In a previous BABAR analysis [23] of $B \rightarrow J / \psi \omega K$ decays, the observation of the $Y(3940)$ meson in the decay $Y(3940) \rightarrow J / \psi \omega$, as reported by the Belle Collaboration [24], was confirmed. In this analysis, $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}(\omega \rightarrow 3 \pi)$ candidates were required to satisfy $0.7695 \leq m_{3 \pi} \leq$ $0.7965 \mathrm{GeV} / c^{2}$, and no evidence for the decay $X(3872) \rightarrow J / \psi \omega$ was found.

Figure 3: The $J / \psi \omega$ mass distribution for (a) $B^{+} \rightarrow J / \psi \omega K^{+}$and (b) $B^{0} \rightarrow J / \psi \omega K_{S}^{0}$ decays; (c) shows the region $m_{J / \psi \omega}<3.95 \mathrm{GeV} / c^{2}$ of (a). The curves show the fit results and the individual fit contributions.

In a more recent BABAR analysis [2] the same decay mode $B \rightarrow J / \psi \omega K$ has been revisited using a slightly larger dataset and extending the range of the ω-mass region to $0.74 \leq m_{3 \pi} \leq 0.7965$ GeV / c^{2}. All other selection criteria are the same as in the previous analysis [23]. The efficiency as a function of $m_{J / \psi \omega}$ varies between 5 and 7%, and the mass resolution degrades from $6.5 \mathrm{MeV} / c^{2}$ to $9 \mathrm{MeV} / c^{2}$, over the accessible mass range. The $J / \psi \omega$ mass $\left(m_{J / \psi \omega}\right)$ distribution, after background subtraction, shows a clear signal corresponding to $Y(3940) \rightarrow J / \psi \omega$, and evidence for $X(3872) \rightarrow$ $J / \psi \omega$. These signals are present in both B^{+}and B^{0} samples [25] as shown in Fig. 3. The $m_{J / \psi \omega}$ distributions are fitted simultaneously after correcting for efficiency and branching fractions. The function used in the fit has three components: an $X(3872)$ component which is a Gaussian function with fixed $\sigma=6.7 \mathrm{MeV} / c^{2} ;$ a $Y(3940)$ contribution described by a relativistic S-wave Beit-Wigner function; and a nonresonant contribution given by a broad Gaussian function multiplied by $m_{J / \psi \omega}$. The $Y(3940)$ and nonresonant components are multiplied by the phase space factor $p q$, where p is the kaon momentum in the B rest frame and q is the J / ψ momentum in the $J / \psi 3 \pi$ system. A good fit is obtained ($\chi^{2} / N D F=54.7 / 51$). The fit results are summarized in Table 1.

When combined with the product branching fraction for $B \rightarrow X(3872) K, X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$ [17], the BABAR ratio of branching fractions $\mathscr{B}(X(3872) \rightarrow J / \psi \omega) / \mathscr{B}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)$has the value 0.7 ± 0.3 and 1.7 ± 1.3 (combined uncertainties) for B^{+}and B^{0}, respectively. These results provide an average ratio of 0.8 ± 0.3, which is in agreement with the Belle result [19] of $1.0 \pm 0.4 \pm 0.3$.

To judge whether the 3π originate from ω decays or not, 3π events in the mass range of ω and η signals are selected. The sum of the ω-Dalitz-plot weights [23] is consistent with the number of 3π events around the ω signal. The same sum for the events around η signal is consistent with zero. The sum for the weighted 3π mass distribution associated with the $X(3872)$ is consistent with the number of events observed. This justifies the ω interpretation of the events in the X (3872) region.

Quantity	Measurement
Mass $X(3872)\left(\mathrm{MeV} / c^{2}\right)$	$3873.0_{-1.6}^{+1.8} \pm 1.3$
Mass $Y(3940)\left(\mathrm{MeV} / c^{2}\right)$	$3919.1_{-3.4}^{+3.8} \pm 2.0$
Width $Y(3940)(\mathrm{MeV})$	$31_{-8}^{+10} \pm 5$
$\mathscr{B}\left(B^{0} \rightarrow X(3872) K^{0}\right) \times \mathscr{B}(X(3872) \rightarrow J / \psi \omega)\left(10^{-5}\right)$	$0.6 \pm 0.3 \pm 0.1$
$\mathscr{B}\left(B^{+} \rightarrow X(3872) K^{+}\right) \times \mathscr{B}(X(3872) \rightarrow J / \psi \omega)\left(10^{-5}\right)$	$0.6 \pm 0.2 \pm 0.1$
$\mathscr{B}\left(B^{0} \rightarrow Y(3940) K^{0}\right) \times \mathscr{B}(Y(3940) \rightarrow J / \psi \omega)\left(10^{-5}\right)$	$2.1 \pm 0.9 \pm 0.3$
$\mathscr{B}\left(B^{+} \rightarrow Y(3940) K^{+}\right) \times \mathscr{B}(Y(3940) \rightarrow J / \psi \omega)\left(10^{-5}\right)$	$3.0_{-0.6}^{+0.7}+0.5$
$\mathscr{B}\left(B^{0} \rightarrow J / \psi \omega K^{0}\right)\left(10^{-4}\right)$	$2.3 \pm 0.3 \pm 0.3$
$\mathscr{B}\left(B^{+} \rightarrow J / \psi \omega K^{+}\right)\left(10^{-4}\right)$	$3.2 \pm 0.1_{-0.3}^{+0.6}$
$R_{X}\left(\right.$ ratio of B^{0} to B^{+}branching fraction to $\left.B \rightarrow X(3872) K\right)$	$1.0_{-0.6}^{+0.8}+0.2$
R_{Y} (ratio of B^{0} to B^{+}branching fraction to $\left.B \rightarrow Y(3940) K\right)$	$0.7_{-0.3}^{+0.4} \pm 0.1$
R_{NR} (ratio of B^{0} to B^{+}branching fraction to nonresonant $\left.J / \psi \omega K\right)$	$0.7 \pm 0.1 \pm 0.1$

Table 1: Results obtained from the most recent BABAR analysis of $B \rightarrow J / \psi \omega K$ decays [2].

Figure 4: The $m_{3 \pi}$ distribution for events that satisfy $3.8625 \leq m_{J / \psi \omega} \leq 3.8825 \mathrm{GeV} / c^{2}$ for (a) B^{+}, (b) B^{0}, and (c) combined. The vertical line shows the ω nominal mass. In (c), the solid (dashed) histogram shows the P-wave (S-wave) Monte Carlo events normalized to the number of data events.

The events with $3.8625 \leq m_{J / \psi \omega} \leq 3.8825 \mathrm{GeV} / c^{2}$ are selected for further investigation of the $X(3872)$ parity. For those events, the $m_{3 \pi}$ distributions are shown in Fig. 4 and compared with the Monte Carlo simulation for different spin assignment. The P-wave assignment is favored $\left(\chi^{2} / N D F=3.53 / 5\right)$ over the S-wave $\left(\chi^{2} / N D F=10.17 / 5\right)$, hence $J^{P}=2^{-}$is favored over $J^{P}=$ 1^{+}, but the latter cannot be ruled out. Clearly this analysis would benefit greatly from the much larger datasets available from future facilities such as the Super B-factories.

4. Acknowledgments

I would like to thank my BABAR Collaborators, especially Vera Lüth, Bill Dunwoodie, and Bryan Fulsom, for their contributions to the presentation at the ICHEP meeting, and to these proceedings.

References

[1] P. del Amo Sanchez et al., Phys. Rev. Lett. 105, 172001 (2010).
[2] P. del Amo Sanchez et al., Phys. Rev. D 82, 011101 (2010).
[3] R. M. Baltrusaitis et al., Phys. Rev. Lett. 56, 107 (1986).
[4] J. Z. Bai et al., Phys. Rev. Lett. 76 (1996) 3502.
[5] B. V. Bolonkin et al., Yad. Fiz. 46799 (1987) [Nucl. Phys. B 309426 (1988)].
[6] D. Aston et al., Phys. Lett. B 215199 (1988).
[7] D. Alde et al., Phys. Lett. B 177120 (1986).
[8] C. Amsler et al., Phys. Lett. B 520, 175 (2001).
[9] C. Evangelista et al., Phys. Rev. D 57, 5370 (1998) and references therein.
[10] K. Benslama et al., Phys. Rev. D 66, 077101 (2002).
[11] M. Acciarri et al., Phys. Lett. B 501, 173 (2001).
[12] S.-K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003).
[13] D. E. Acosta et al., Phys. Rev. Lett. 93, 072001 (2004).
[14] V. M. Abazov et al., Phys. Rev. Lett. 93, 162002 (2004).
[15] B. Aubert et al., Phys. Rev. D 71, 071103 (2005).
[16] B. Aubert et al., Phys. Rev. D 73, 011101(R) (2006).
[17] B. Aubert et al., Phys. Rev. D 77, 111101(R) (2008).
[18] N. Brambilla et al., arXiv:1010.5827 [hep-ph] (2010).
[19] K. Abe et al., arXiv:hep-ex/0505037 (2005).
[20] B. Aubert et al., Phys. Rev. D 74, 071101(R) (2006).
[21] B. Aubert et al., Phys. Rev. Lett. 102, 132001 (2009).
[22] B. Aubert et al., Phys. Rev. D 71, 031501 (2005).
[23] B. Aubert et al., Phys. Rev. Lett. 101, 082001 (2008).
[24] S.-K. Choi et al., Phys. Rev. Lett. 94, 182002 (2005).
[25] The use of charge conjugate reactions is implied throughout.

[^0]: *Speaker.
 ${ }^{\dagger}$ On behalf of the BABAR Collaboration

