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TMD parton distributions and splitting functions

While QCD factorization methods are well established in the case of scattéasegvables involv-
ing a single large mass scale [1], the treatment of processes with multiple naéess iscsubtle.
Transverse-momentum dependent (TMD) formulations come about in mudtple-cases if one
is to control potentially large contributions to higher orders of perturbatiearthand to describe
appropriately nonperturbative physics in the initial and final states ofalision.

This contribution gives a brief introduction to the topical area of TMD padistributions,
focusing on recent progress and open issues in the characteriZ&fibtibgpdfs in terms of gauge-
invariant operator matrix elements. We discuss the physical picture leadimigaed subtraction
factors; lightcone divergences in TMD splitting functions; issues on feetton.

We start in Sec. 1 by introducing basic concepts using the simpler case Stittadov form
factor. Then in Sec. 2 we move to TMD parton distributions. In Sec. 3 wausksthe region of
small x.

1. Infrared subtraction factors: the case of the Sudakov form factor

The case of the electroweak form factor of quarks (Fig. 1), althoungpler than the treatment
of general hard processes, serves to illustrate the role of gaugéimvsubtraction factors asso-
ciated with infrared subgraphs in factorization formulas for physicat<s®ctions. Suppose we
look for a decomposition of the amplitudien Fig. 1 as a sum of terms, one for each of the regions
contributing to leading power in the hard scale,

= Y Mr(R) + nonleading, (1.1)

regionsR

subject to the requirements that i) the term for the hard region be integaalold) the splitting be-
tween the terms be defined gauge-invariantly. This analysis is carriedjthito(2]. It corresponds
to a factorization formula for a physical cross sectigii] of the schematic form

ol = /[dk] S® Ca ® Cg ® H + nonleading, (1.2)

whereH is the hard termSis the soft term, an@, andCg are the collinear terms.
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Figure 1: (a) Form factor graph; (b) collinear-to-A, collinear-toaBd soft regions.
It is shown in [2] that in order for the above requirements to be satisfied &am is to be

supplemented with subtraction factors, which come from infrared subgia@pud are given by well-
prescribed gauge-invariant operator matrix elements. This is pictured ir2Fay the case of
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the soft termS. The top picture illustrates that in the soft regibris the one-loop contribution
to the vacuum expectation value of two eikonal Wilson lines [3] taken alongtliiggh directions
Pa, Ps. This vacuum expectation value however has singularities from the caHioga and
collinear-to-B regions. The bottom picture depicts the method [2] to sulitrese singularities by
counterterms that are designed to be gauge-invariant and such thatliheag-to-A counterterm
does not introduce spurious extra contributions in the collinear-to-B megiod viceversa. The
term Sresulting from these subtractions is thus still a good approximatiénindhe soft region.

The infrared subtraction factors are identified in [2] for each of the temnfi&. (1.2). Note
that the need for infrared subtractions also emerges in recent anafytesform factor [4] within
the context of soft-collinear effective theory [5] (under the form, beer, of counterterms that are
not automatically gauge-invariant).

Methods similar to the ones just discussed for the form factor are applicatie case of
TMD formulations for general hard-scattering processes to treatoémdgingularities that affect
the operator matrix elements defining TMD parton distributions. We move to this nex
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Figure 2: (top) Soft approximation by lightlike eikonals; (bottongliinear subtractions to the soft term.

2. TMD parton distributions

Suppose we generalize the operator matrix elements that define ordimany gistribution
functions (pdfs) [6] to the case of operators at non-lightcone dissare® instance, for the quark
distribution one has (Fig. 3)

f(y) = (PEY)V (Y oMy (0)P) . (2.1)

Herey are the quark fields evaluated at distagee (0,y—,y, ), wherey, is in general nonzero,
andV are eikonal-line operators. The TMD distribution is given by the doublegiEotransform
iny~ andy, of f.

While Eq. (2.1) works at tree level [7] (including an extra gauge link anityfiin the case
of physical gauge [8]), going beyond tree level requires treating lggtgsingularities [9, 10, 11],
associated with the — 1 endpoint, which are present even in dimensional regularization with an
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cot mir2p 0
p=( . m /2p ,0)

Figure 3: Correlator of two quark fields at distange

infrared cut-off. The explicit evaluation at one loop of these singularitieordinate space is
performed in [11], and gives

Py = 9CF e Ta Y Lrdew ey ro_ 9y (AT 202
) = S5 [av s (e re- 5 ()
e eaerd ) (_yzuz)z—d/2+...} , (2.2)

where 1 is the dimensional-regularization scale gnds the infrared mass regulator. The first
term in the right hand side of Eq. (2.2) corresponds to the case of oydnuifs. The lightcone
singularityv — 1, corresponding to the exclusive boundary: 1, cancels in this term, but it is
present, even at # 4 and finitep, in subsequent terms.

These endpoint singularities come from gluon emission at large rapidity. iffipdy that, us-
ing the matrix element (2.1), the/ (1 — x) factors from real emission probabilities do not in general
combine with virtual corrections to give/ {1 —x) ;. distributions, but leave uncancelled divergences
atfixed k.. The endpoint singularities can be dealt with by the subtractive method]gistussed
in the previous section in the case of the Sudakov form factor. This leadslitprescribed coun-
terterms [11] for the transverse momentum dependent splitting probabilitiesh wan be viewed
as generalizing the plus-distribution regularization kpr# 0. The role of infrared subtractions
analogous to the ones above is discussed in [13] in the case of initial-statefbiections defined
within the soft-collinear effective theory (see also [14]) to describe tbening jet.

The subtractive treatment of lightcone singularities provides an altermaétieod, potentially
more systematic, to the cut-off method [9, 15], in which the eikonal Eq. (2.1) is moved away
from the lightcone. The subtractive approach has been used to studyatienship of the endpoint
behavior at fixed k with the cusp anomalous dimension [16]. We observe that the use of subtrac
tive techniques may also be helpful to analyze issues of factorizationamdmiversality [17, 18]
at TMD level. In the hadroproduction of nearly back-to-back hadrtattorization is broken [17]
by soft gluons exchanged between subgraphs in different collinesatidns (see also the analy-
ses [19, 20] for the Drell-Yan case). So the issue of factorizationratpen developing a sys-
tematic treatment, as yet lacking, capable of handling overlapping diveggém infrared regions
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for complex observables that involve color charges in both initial and $itadds. The techniques
above may prove to be useful for this.
More details and references can be found in the review articles [21].

3. TMD distributions at small x

As noted above, the case of back-to-back di-hadron or di-jet hesttaption [17, 18] illus-
trates that, as a result of soft and collinear gluon correlations between anitiafinal states, a
general TMD factorization formula is still lacking. In the case of small x, &esv, a TMD fac-
torization result holds [22] thanks to the dominance of single gluon helicityght énergy. In
this case, a TMD gluon distribution can be defined gauge-invariantly frerhitth-energy pole in
physical cross sections.

The main reason why such a definition for TMD pdfs can be constructedihigih-energy
limit is that [22] one can relate directly (up to perturbative corrections) tbescsection for ahys-
ical process, say, photoproduction of a heavy-quark pair, to an unateejitransverse momentum
dependent gluon distribution, much as, in the conventional parton piaosedoes for DIS in
terms of ordinary (integrated) parton distributions. On the other handjffrraliies in defining a
TMD distribution in the general case, over the whole phase space, cmtyléne associated with
the fact that it is not obvious how to determine one such relation for gkiaganatics.

Applications of this observation to di-jet azimuthal correlationsXe& 1 are investigated
in [23]. Further phenomenological applications of the small-x TMD splittingfioms [22] are in
progress [24].

On the other hand, extensions of the above framework are neededéftortake into account
the nonlinear effects that can be expected to arise in the small x regionHedmgh parton density.
Work in this direction for dense targets and nuclei may be found in [25].

The techniques [26] have been proposed to incorporate the treatmmenttifie-gluon rescat-
tering graphs at small x starting from the operator matrix elements [6, 94 phfton distributions.
They may thus be helpful for extensions to the high density region thairaesldo retain accuracy
also in the treatment of contributions from highprocesses.

Acknowledgments. | thank the organizing committee for the kind invitation and for the excellent
organization of this great conference.
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