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TMD parton distributions and splitting functions

While QCD factorization methods are well established in the case of scattering observables involv-
ing a single large mass scale [1], the treatment of processes with multiple mass scales is subtle.
Transverse-momentum dependent (TMD) formulations come about in multiple-scale cases if one
is to control potentially large contributions to higher orders of perturbation theory and to describe
appropriately nonperturbative physics in the initial and final states of the collision.

This contribution gives a brief introduction to the topical area of TMD partondistributions,
focusing on recent progress and open issues in the characterization of TMD pdfs in terms of gauge-
invariant operator matrix elements. We discuss the physical picture leading toinfrared subtraction
factors; lightcone divergences in TMD splitting functions; issues on factorization.

We start in Sec. 1 by introducing basic concepts using the simpler case of theSudakov form
factor. Then in Sec. 2 we move to TMD parton distributions. In Sec. 3 we discuss the region of
small x.

1. Infrared subtraction factors: the case of the Sudakov form factor

The case of the electroweak form factor of quarks (Fig. 1), although simpler than the treatment
of general hard processes, serves to illustrate the role of gauge-invariant subtraction factors asso-
ciated with infrared subgraphs in factorization formulas for physical cross sections. Suppose we
look for a decomposition of the amplitudeΓ in Fig. 1 as a sum of terms, one for each of the regions
contributing to leading power in the hard scale,

Γ = ∑
regionsR

MΓ(R) + nonleading, (1.1)

subject to the requirements that i) the term for the hard region be integrable,and ii) the splitting be-
tween the terms be defined gauge-invariantly. This analysis is carried through in [2]. It corresponds
to a factorization formula for a physical cross sectionσ [Γ] of the schematic form

σ [Γ] =
∫
[dk] S ⊗ CA ⊗ CB ⊗ H + nonleading, (1.2)

whereH is the hard term,S is the soft term, andCA andCB are the collinear terms.

pA

p
B

k k=0

pA
+

−pB
−

k
+

k
−

(a)                                                  (b)

S

B A

Figure 1: (a) Form factor graph; (b) collinear-to-A, collinear-to-Band soft regions.

It is shown in [2] that in order for the above requirements to be satisfied each term is to be
supplemented with subtraction factors, which come from infrared subgraphs and are given by well-
prescribed gauge-invariant operator matrix elements. This is pictured in Fig. 2 for the case of
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the soft termS. The top picture illustrates that in the soft regionΓ is the one-loop contribution
to the vacuum expectation value of two eikonal Wilson lines [3] taken along light-like directions
p̂A, p̂B. This vacuum expectation value however has singularities from the collinear-to-A and
collinear-to-B regions. The bottom picture depicts the method [2] to subtractthese singularities by
counterterms that are designed to be gauge-invariant and such that the collinear-to-A counterterm
does not introduce spurious extra contributions in the collinear-to-B region, and viceversa. The
termS resulting from these subtractions is thus still a good approximation toΓ in the soft region.

The infrared subtraction factors are identified in [2] for each of the termsin Eq. (1.2). Note
that the need for infrared subtractions also emerges in recent analysesof the form factor [4] within
the context of soft-collinear effective theory [5] (under the form, however, of counterterms that are
not automatically gauge-invariant).

Methods similar to the ones just discussed for the form factor are applicablein the case of
TMD formulations for general hard-scattering processes to treat endpoint singularities that affect
the operator matrix elements defining TMD parton distributions. We move to this next.
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Figure 2: (top) Soft approximation by lightlike eikonals; (bottom) collinear subtractions to the soft term.

2. TMD parton distributions

Suppose we generalize the operator matrix elements that define ordinary parton distribution
functions (pdfs) [6] to the case of operators at non-lightcone distances. For instance, for the quark
distribution one has (Fig. 3)

f̃ (y) = 〈P|ψ(y)V †
y (n)γ+V0(n)ψ(0)|P〉 . (2.1)

Hereψ are the quark fields evaluated at distancey = (0,y−,y⊥), wherey⊥ is in general nonzero,
andV are eikonal-line operators. The TMD distribution is given by the double Fourier transform
in y− andy⊥ of f̃ .

While Eq. (2.1) works at tree level [7] (including an extra gauge link at infinity in the case
of physical gauge [8]), going beyond tree level requires treating lightcone singularities [9, 10, 11],
associated with thex → 1 endpoint, which are present even in dimensional regularization with an
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Figure 3: Correlator of two quark fields at distancey.

infrared cut-off. The explicit evaluation at one loop of these singularitiesin coordinate space is
performed in [11], and gives

f̃1(y) =
αsCF

π
p+

∫ 1

0
dv

v
1− v

{[
eip·yv − eip·y] Γ(2−

d
2
) (

4πµ2

ρ2 )2−d/2

+ eip·yv π2−d/2 Γ(
d
2
−2) (−y2µ2)2−d/2+ · · ·

}
, (2.2)

whereµ is the dimensional-regularization scale andρ is the infrared mass regulator. The first
term in the right hand side of Eq. (2.2) corresponds to the case of ordinary pdfs. The lightcone
singularityv → 1, corresponding to the exclusive boundaryx = 1, cancels in this term, but it is
present, even atd 6= 4 and finiteρ, in subsequent terms.

These endpoint singularities come from gluon emission at large rapidity. They imply that, us-
ing the matrix element (2.1), the 1/(1−x) factors from real emission probabilities do not in general
combine with virtual corrections to give 1/(1−x)+ distributions, but leave uncancelled divergences
at fixed k⊥. The endpoint singularities can be dealt with by the subtractive method [2, 12] discussed
in the previous section in the case of the Sudakov form factor. This leads towell-prescribed coun-
terterms [11] for the transverse momentum dependent splitting probabilities, which can be viewed
as generalizing the plus-distribution regularization fork⊥ 6= 0. The role of infrared subtractions
analogous to the ones above is discussed in [13] in the case of initial-state beam functions defined
within the soft-collinear effective theory (see also [14]) to describe the incoming jet.

The subtractive treatment of lightcone singularities provides an alternativemethod, potentially
more systematic, to the cut-off method [9, 15], in which the eikonaln in Eq. (2.1) is moved away
from the lightcone. The subtractive approach has been used to study therelationship of the endpoint
behavior at fixed k⊥ with the cusp anomalous dimension [16]. We observe that the use of subtrac-
tive techniques may also be helpful to analyze issues of factorization and non-universality [17, 18]
at TMD level. In the hadroproduction of nearly back-to-back hadrons, factorization is broken [17]
by soft gluons exchanged between subgraphs in different collinear directions (see also the analy-
ses [19, 20] for the Drell-Yan case). So the issue of factorization depends on developing a sys-
tematic treatment, as yet lacking, capable of handling overlapping divergences in infrared regions
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for complex observables that involve color charges in both initial and finalstates. The techniques
above may prove to be useful for this.

More details and references can be found in the review articles [21].

3. TMD distributions at small x

As noted above, the case of back-to-back di-hadron or di-jet hadroproduction [17, 18] illus-
trates that, as a result of soft and collinear gluon correlations between initial and final states, a
general TMD factorization formula is still lacking. In the case of small x, however, a TMD fac-
torization result holds [22] thanks to the dominance of single gluon helicity at high energy. In
this case, a TMD gluon distribution can be defined gauge-invariantly from the high-energy pole in
physical cross sections.

The main reason why such a definition for TMD pdfs can be constructed in the high-energy
limit is that [22] one can relate directly (up to perturbative corrections) the cross section for aphys-
ical process, say, photoproduction of a heavy-quark pair, to an unintegrated, transverse momentum
dependent gluon distribution, much as, in the conventional parton picture,one does for DIS in
terms of ordinary (integrated) parton distributions. On the other hand, the difficulties in defining a
TMD distribution in the general case, over the whole phase space, can largely be associated with
the fact that it is not obvious how to determine one such relation for general kinematics.

Applications of this observation to di-jet azimuthal correlations forx ≪ 1 are investigated
in [23]. Further phenomenological applications of the small-x TMD splitting functions [22] are in
progress [24].

On the other hand, extensions of the above framework are needed if oneis to take into account
the nonlinear effects that can be expected to arise in the small x region fromthe high parton density.
Work in this direction for dense targets and nuclei may be found in [25].

The techniques [26] have been proposed to incorporate the treatment ofmultiple-gluon rescat-
tering graphs at small x starting from the operator matrix elements [6, 9, 10] for parton distributions.
They may thus be helpful for extensions to the high density region that are aimed to retain accuracy
also in the treatment of contributions from high pT processes.

Acknowledgments. I thank the organizing committee for the kind invitation and for the excellent
organization of this great conference.
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