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We study photon-meson transition form factors of light mesons in the kinematics, where one pho-
ton is real and other is virtual. Dispersive approach to axial anomaly leads to the anomaly sum
rule. The absence of corrections to it allows us to get the relation between possible corrections to
continuum and to lower states within QCD method which does not rely on factorization hypoth-
esis. We show, relying on the recent data of the BaBar Collaboration, that the relative correction
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form factor. The same effect for η meson is shown to be less pronounced.

35th International Conference of High Energy Physics - ICHEP2010,
July 22-28, 2010
Paris France

∗Speaker.
†On leave from Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:teryaev@theor.jinr.ru
mailto:klopot@theor.jinr.ru
mailto:armen@itep.ru


P
o
S
(
I
C
H
E
P
 
2
0
1
0
)
1
7
4

Axial Anomaly and Transition Formfactors Oleg Teryaev

1. Introduction

Theoretical study of the photon-meson transition formfactor has a long history and have
yielded several important results. It is well known, that the transition formfactor of the pion
Fπγ(k2,q2) into two real photons (k2 = 0,q2 = 0) is governed by axial anomaly [1]: Fπγ(0,0) =
1/(2

√
2π2 fπ), fπ = 130.7 MeV . On the other hand, in the kinematical region where one photon is

real (k2 = 0) and other is virtual (q2 = −Q2 < 0), factorization approach to perturbative quantum
chromodynamics (pQCD) for exclusive process in the leading order in the strong coupling constant

predicts [2, 3]: Fπγ(Q2) =
√

2 fπ
3Q2

∫ 1
0 dx

φπ(x,Q2)
x +O(1/Q4) , where φπ(x) is a pion distribution am-

plitude (DA). The pion DA depends on the renormalization scale and at large Q2 asymptotically
acquires form φasymp

π (x) = 6x(1− x). This leads to asymptotic behaviour for the pion transition
form factor at Q2 → ∞:

Fasymp
πγ (Q2) =

√
2 fπ

Q2 +O(1/Q4) . (1.1)

Recent measurements of Fπγ(Q2) at 4 < Q2 < 40 GeV 2 by BaBar Collaboration [4] showed
very unexpected results: although at Q2 < 10 GeV 2 the data show good agreement with previous
experiments and pQCD predicted behaviour, at larger virtualities transition formfactor continues to
grow strongly exceeding the predicted asymptotics (1.1). This disagreement leads to to the question
of pQCD factorization validity. Recently, there were proposed several approaches to explain such
unusual behaviour of Fπγ(Q2) [5, 6, 7, 8], in particular, questioning pQCD factorization.

The aim of our work is to study the meson-photon transition form factors for the case of
virtual photon using the anomaly sum rule. This generalizes the usual application of anomaly
which provides the boundary condition in the limit of two real photons only. Our (non-perturbative)
QCD method does not imply the QCD factorization and is valid even if the QCD factorization is
broken. Using axial anomaly in the dispersive approach we get the exact relations between possible
corrections to lower states and continuum providing a possibility of relatively large corrections to
the lower states.

2. Anomaly sum rule and quark-hadron duality

The anomaly sum rule can be derived using the dispersive approach to axial anomaly. Let us
introduce notations and briefly remind the derivation of the anomaly sum rule (see [9]). The VVA
triangle graph amplitude

Tαµν(k,q) =
∫

d4xd4ye(ikx+iqy)⟨0|T{J5
α(0)Jµ(x)Jν(y)}|0⟩ (2.1)

contains axial current J5
α =(ūγ5γαu− d̄γ5γαd) and two vector currents Jµ =((2/3)ūγµu−(1/3)d̄γµd);

k,q are momenta of photons. This amplitude can be presented as a tensor decomposition

Tαµν(k,q) = F1 εαµνρkρ +F2 εαµνρqρ + F3 qνεαµρσ kρqσ +F4 qνεαµρσ kρqσ

+ F5 kµεανρσ kρqσ +F6 qµεανρσ kρqσ , (2.2)
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where the coefficients Fj = Fj(k2,q2, p2;m2), p = k+q, j = 1, . . . ,6 are the corresponding Lorentz
invariant amplitudes. Writing the unsubtracted dispersion relations for the form factors one gets
the finite subtraction for axial current divergence resulting in the anomaly sum rule which for the
kinematical configuration we are interested in (k2 = 0, q2 ̸= 0) takes the form [9]:∫ ∞

4m2
A3a(t;q2,m2)dt =

1
2π

, A3a ≡
1
2

Im(F3 −F6). (2.3)

This anomaly sum rule (ASR) relation holds for an arbitrary quark mass m and for any q2 in
the considered region. Another important property of the above relation is absence of any αs

corrections to the integral. Moreover, it is expected that it does not have any nonperturbative
corrections too (’t Hooft’s principle).

The pion transition formfactor Fπγ , which is defined from the matrix element∫
d4xeikx⟨π0(p)|T{Jµ(x)Jν(0)}|0⟩= εµνρσ kρqσ Fπγ (2.4)

enters the tree-point correlation function Tαµν(k,q):

Tαµν(k,q) =
i
√

2 fπ

p2 −m2
π

pαkρqσ εµνρσ Fπγ +(higher states), ⟨0|J5
α(0)|π0(p)⟩= i

√
2pα fπ . (2.5)

Therefore, the pion and higher states contribute the function A3a as follows:

A3a =
√

2 fππFπγ(Q2)δ (s−m2
π)+(higher states), (2.6)

so from (1.1) the pion and other contributions to ASR (2.3) are

1
2π

=
2π f 2

π
Q2 +(higher states). (2.7)

We see, that at Q2 ̸= 0 anomaly sum rule (2.3) cannot be saturated by pion contribution only
due to 1/Q2 behavior, so we need to consider higher states. The other contributions are provided by
axial mesons, the lightest of which is the a1(1260) meson. In fact, the contribution of longitudinally
polarized a1 is given by the similar equation to (1.1) at large Q2. Actually, the same is true for all
the higher axial mesons and mesons with higher spin. So, for the case Q2 ̸= 0 the anomaly relation
(2.3) cannot be explained in terms of any finite number of mesons due to the fact that all transition
form factors are decreasing functions. That is why we conclude that only infinite number of higher
states can saturate anomaly sum rule and therefore at Q2 ̸= 0 the axial anomaly is a collective effect
of meson spectrum in contrast with the case of two real photons Q2 = 0, where the anomaly sum
rule is saturated by pion contribution only. Let us note that this conclusion does not depend on
choice of meson distribution amplitudes.

According to the quark-hadron duality, in the model "π0+continuum", the spectral density A3a

can be written as:

A3a
(
s,Q2)=√

2π fπδ (s−m2
π)Fπγ

(
Q2) +AQCD

3a θ(s− s0), (2.8)

where AQCD
3a θ(s− s0) is a continuum contribution with a threshold s0 = 0.7 GeV 2. One-loop

perturbative theory calculation gives a simple result for AQCD
3a : AQCD

3a (s,Q2) = 1
2π

Q2

(s+Q2)2 . Using

3
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Figure 1: (Colour online). Relative contributions of π0 (thick blue curve), a1 (thin blue curve) mesons
(intervals of duality are 0.7 GeV 2 and 1.8 GeV 2 respectively), and continuum ( dot-dashed black curve)
(continuum threshold is s1 = 2.5 GeV 2) to the anomaly sum rule (dashed red line).

ASR relation (2.3) one can easily obtain the expression for Fπγ(Q2), which coincides with the
interpolation formula proposed by S. Brodsky and G. Lepage [3] (s0 = 4π2 f 2

π )

Fπγ(Q2) =
1

2
√

2π2 fπ

s0

s0 +Q2 . (2.9)

If we take into account the next contributing state (a1 meson), the ASR can be written as follows:

1
2π

=
√

2π fπFπγ(Q2)+ Ia1 +
1

2π

∫ ∞

s1

ds
Q2

(s+Q2)2 , (2.10)

so the a1 contribution Ia1 can be estimated as (Eq. (2.9) is used):

Ia1 =
1

2π
Q2 s1 − s0

(s1 +Q2)(s0 +Q2)
. (2.11)

The plot for contributions of pion, a1 meson and continuum is shown in Fig.1. The figure
illustrates the anomaly collective effect: indeed, the contribution of infinite number of higher reso-
nances (continuum contribution) dominates starting from relatively small Q2 ≃ 1.5 GeV 2.

3. Interplay between corrections and experimental data

As we stressed above, anomaly sum rule is an exact relation, i.e.
∫ ∞

0 A3a(s;Q2)ds does not
acquire any corrections. Nevertheless, the continuum contribution Icont =

∫ ∞
si

A3a(s;Q2)ds may
have perturbative as well as power corrections. Note that the two-loop corrections to the whole
triangle graph were found to be zero [10] implying the zero corrections to all spectral densities.
Therefore, the model of the corrections to continuum discussed below should rather correspond
to some non-perturbative corrections. Let us first consider the contributions of local condensates.
Naively, they should strongly decrease with Q2 compensating the mass dimension of gluon (as
quark one is suppressed even more) condensate. However the ’t Hooft’s principle requires (see
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[9], Section 4) the rapid decrease of the corrections with Borel parameter M2 (related to s) so that
the power of Q2 in the denominator may be not so large. In reality the actual calculations do not
satisfy this property and the situation may be improved by the use of non-local condensates (see [9]
and references therein). Another possibility is other non-perturbative contributions, like instanton-
induced ones. So we assume the appearance of such corrections in what follows modelling the
corrections to continuum. For the model “π0+continuum”

1
2π

= Iπ + Icont , I0
π =

√
2π fπF0

πγ(Q
2) =

1
2π

s0

s0 +Q2 , I0
cont =

1
2π

Q2

s0 +Q2 (3.1)

the ASR requires the relation between corrections: δ Iπ =−δ Icont . However, the relative correction
to pion is enhanced as compared to the relative correction to continuum by factor Q2/s0:

Rπ = δ Iπ/I0
π = (δ Icont/I0

cont)
Q2

s0
. (3.2)

which leads to the situation, where the leading power correction to continuum preserving its asymp-
totics results in a substantial (of the order of the main term I0

π ) contribution to the pion state chang-
ing the pion form factor asymptotics at large Q2. Supposing the correction to continuum to be
δ Icont = −cs0

ln(Q2/s0)+b
Q2 , we can fit the parameters b,c using data of BaBar collaboration for Fπγ

: b = −2.74, c = 0.045. Estimating the relation between the corrections to continuum and to η
meson in the same way, we find that the enhancement is more than 3 times smaller than the one for
π0:

Rη = δ Iη/I0
η ≃ (δ Icont/I0

cont)
Q2

sη
0
= sπ

0/sη
0 ≃ 0.3Rπ , sπ

0 = 0.7GeV 2, sη
0 = 2.5GeV 2. (3.3)
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