Observation of a Narrow Near-Threshold Structure in the $J/\psi \phi$ Mass Spectrum in $B^+ \rightarrow J/\psi \phi K^+$ Decays

Kai Yi

University of Iowa
E-mail: yik@fnal.gov

Observation is reported for a structure near the $J/\psi \phi$ threshold in $B^+ \rightarrow J/\psi \phi K^+$ decays produced in $\bar{p}p$ collisions at $\sqrt{s} = 1.96$ TeV with a statistical significance of beyond 5 standard deviations. There are 19 ± 6 events observed for this structure at a mass of $4143^{+2.9}_{-3.0}$(stat) ± 0.6(syst) MeV/c^2 and a width of $15.3^{+10.4}_{-6.1}$(stat) ± 2.5(syst) MeV/c^2, which are consistent with the previous measurements reported as evidence of the $Y(4140)$.

35th International Conference of High Energy Physics - ICHEP2010,
July 22-28, 2010
Paris France

*Speaker.
†for the CDF Collaboration
the phase space [6] to describe the background shape. Even though we exclude the high mass region to

resolution function with the r.m.s. fixed to 1.7 MeV

model the enhancement by an

used in the previous analysis (2.7 fb^{-1})

events. Fig. 2 shows the mass difference, \(\Delta M \), between \(\mu^+\mu^-K^+K^- \) and \(\mu^+\mu^- \), in the \(B^+ \) mass window is shown as the black histogram. The red histogram is the \(\Delta M \) distribution from the data in the B sideband.

Recently, evidence has been reported by CDF for a narrow structure near the \(J/\psi \phi \) threshold, named \(Y(4140) \), in \(B^+ \to J/\psi \phi K^+ \) decays produced in \(\bar{p}p \) collisions at \(\sqrt{s} = 1.96 \) TeV [1]. The structure is the first charmonium-like structure decaying into two heavy quarkonium states (\(c\bar{c} \) and \(s\bar{s} \)) which is a candidate for exotic mesons [2]. In this note, we report an update on a search for structures in the \(J/\psi \phi \) system produced in exclusive \(B^+ \to J/\psi \phi K^+ \) decays with \(J/\psi \to \mu^+\mu^- \) and \(\phi \to K^+K^- \). This analysis is based on a sample of \(\bar{p}p \) collision data at \(\sqrt{s} = 1.96 \) TeV with an integrated luminosity of about 6.0 fb^{-1} collected by the CDF II detector at the Tevatron. The CDF II detector has been described in detail elsewhere [3]. In this analysis, \(J/\psi \to \mu^+\mu^- \) events are recorded using a dedicated three-level dimuon trigger.

The invariant mass of \(J/\psi \phi K^+ \) in the current dataset, which includes those used in the previous analysis after applying the same requirements used in the previous analysis [1], is shown in Fig. 1. A fit with a Gaussian signal function with its rms fixed to the value 5.9 MeV/c^2 obtained from Monte Carlo (MC) simulation [4] and a linear background function to the mass spectrum of \(J/\psi \phi K^+ \) returns a \(B^+ \) signal of \(115 \pm 12 \) (stat) events. For a luminosity increase by a factor of 2.2, the yield increase was 1.53, reduced by trigger rate-limitation at higher average luminosity. We then select \(B^+ \) signal candidates with a mass within \(3\sigma \) (17.7 MeV/c^2) of the nominal \(B^+ \) mass. We define those events with a mass within \([-9,-6]\)\(\sigma \) or \([6,9]\)\(\sigma \) of nominal \(B \) mass as B sideband events. Fig. 2 shows the mass difference, \(\Delta M = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-) \), for events in the \(B^+ \) mass window as well as in the B sideband in our data sample. The comparison of the \(\Delta M \) distribution in the B mass window for the dataset used in this analysis (6.0 fb^{-1}) and the dataset used in the previous analysis (2.7 fb^{-1} [1]) is shown in Figure 3.

The same model is used to examine the \(Y(4140) \) structure as described in reference [1]. We model the enhancement by an S-wave relativistic BW function [5] convoluted with a Gaussian resolution function with the r.m.s. fixed to 1.7 MeV/c^2 obtained from MC, and use three-body phase space [6] to describe the background shape. Even though we exclude the high mass region to avoid the \(B_s \) contamination, there is still a small contribution in the region of interest. We obtained the \(\Delta M \) shape from \(B_s \) contamination and fix the \(\Delta M \) shape obtained from \(B_s \) MC simulation,
the yield to 3.3, scaled from the $B_s \to J/\psi \phi$ yield in data. An unbinned likelihood fit to the ΔM distribution, as shown in Fig. 4, returns a yield of 19 ± 6 events, a ΔM of $1046.7^{+2.9}_{-3.0}$ MeV/c^2, and a width of $15.3^{+10.4}_{-6.1}$ MeV/c^2.

We use the same simulation process as in Reference [1], based on a pure three-body phase space background shape to determine the significance of the $Y(4140)$ structure. We performed a total of 84 million simulations and found 19 trials with a $\sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{max})}$ value greater than or equal to the value obtained in the data (5.9), as shown in Fig. 5, where \mathcal{L}_0 and \mathcal{L}_{max} are the likelihood values for the null hypothesis fit and signal hypothesis fit. The resulting p-value is 2.3×10^{-7}, corresponding to a significance of greater than 5.0σ.

The mass of this structure, including systematic uncertainty, is measured as $4143.4^{+2.9}_{-3.0}$(stat) ± 0.6(syst) MeV/c^2 after including the world-average J/ψ mass. The relative efficiency between $B^+ \to Y(4140)K^+$, $Y(4140) \to J/\psi \phi$ and $B^+ \to J/\psi \phi K^+$ is 1.1 assuming $Y(4140)$ as an S-wave structure and B^+ phase space decays. Thus the relative branching fraction between $B^+ \to Y(4140)K^+$, $Y(4140) \to J/\psi \phi$ and $B^+ \to J/\psi \phi K^+$ including systematics is 0.149 ± 0.039(stat) ± 0.024(syst).

An further excess above the three-body phase space background shape appears at approximately 1.18 GeV/c^2 in Fig. 1 (b). Since the significance of $Y(4140)$ is greater than 5σ, we fit to the data assuming two structures at ΔM of 1.05 and 1.18 GeV/c^2 as shown in Fig. 6. The fit to the data with the same requirements as in the previous paper [1] returns a yield of 20 ± 5 events, a ΔM of $1046.7^{+2.8}_{-2.9}$ MeV/c^2, and a width of $15.0^{+8.5}_{-5.6}$ MeV/c^2 for the $Y(4140)$, which are consistent with the values returned from a $Y(4140)$-only signal fit. The fit returns a yield of 22 ± 8 events, a ΔM of $1177.7^{+8.4}_{-6.7}$ MeV/c^2, and a width of $32.3^{+21.9}_{-15.3}$ MeV/c^2 for the structure around ΔM of 1.18 GeV/c^2. The significance of the second structure, determined by a similar simulation is 3.1σ.
In summary, the growing $B^+ \rightarrow J/\psi K^+$ sample at CDF enables us to observe the $Y(4140)$ structure [1] with a significance greater than 5σ. Assuming an S-wave relativistic BW, the mass and width of this structure, including systematic uncertainties, are measured to be $4143.4^{+2.9}_{-3.0}$(stat) \pm 0.6(syst) MeV/c^2 and $15.3^{+10.4}_{-6.1}$(stat) \pm 2.5(syst) MeV/c^2, respectively. The relative branching fraction between $B^+ \rightarrow Y(4140)K^+, Y(4140) \rightarrow J/\psi\phi$ and $B^+ \rightarrow J/\psi\phi K^+$ including systematics is 0.149 \pm 0.039(stat) \pm 0.024(syst). We also find evidence at 3.1σ level for a second structure with a mass of $4274.4^{+8.4}_{-6.7}$(stat) MeV/c^2, a width of $32.3^{+21.9}_{-15.3}$(stat) MeV/c^2 and a yield of 22 \pm 8.

References

[5] $\frac{dN}{dm} \propto \frac{m\Gamma(m)}{(m^2-m_0^2+i\Gamma_0^2)^2}$, where $\Gamma(m) = \Gamma_0 \frac{m_0}{m}$, and the 0 subscript indicates the value at the peak mass.