PROCEEDINGS OF SCIENCE

PoS

Renormalization of the baryon axial vector current in large- N_c

María A. Hernández-Ruiz* †

Instituto de Física, Universidad Autónoma de San Luis Potosí Av. Manuel Nava 6 Zona Universitaria 78290, San Luis Potosí SLP, México. Facultad de Ciencias Químicas Universidad Autónoma de Zacatecas Apartado Postal 585, 98060 Zacatecas, México. mahernan@ifisica.uaslp.mx

The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large– N_c limit, where N_c is the number of colors. Loop graphs with octet and decuplet intermediate states cancel to various orders in N_c as a consequence of the large- N_c spinflavor symmetry of QCD baryons. We present a preliminary study of the convergence of the chiral expansion with $1/N_c$ corrections. The physical values $N_f = 3$ (where N_f is the number of light quark flavors) and $N_c = 3$ are used in the case of g_A in QCD.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

*Speaker.

[†]The author would like to express their gratitude to Local Organizing Committee of the 35th International Conference of High Energy Physics also acknowledge support.

María A. Hernández-Ruiz

1. Renormalization of the baryon axial vector current

The QCD operators have well-defined $1/N_c$ expansions. For the baryon axial vector current A^{kc} its $1/N_c$ expansion can be written as

$$A^{kc} = a_1 G^{kc} + \sum_{n=2,3}^{N_c} b_n \frac{1}{N_c^{n-1}} \mathscr{D}_n^{kc} + \sum_{3,5}^{N_c} c_n \frac{1}{N_c^{n-1}} \mathscr{O}_n^{kc},$$
(1.1)

The correction containing the full dependence on the ratio Δ/m_{Π} , where $\Delta \equiv M_{\Delta} - M_N$ is the decuplet-octet mass difference and m_{Π} is the meson mass. Was derived in Ref. [1] and reads

$$\begin{split} \delta A^{kc} &= \frac{1}{2} \left[A^{ja}, \left[A^{jb}, A^{kc} \right] \right] \Pi^{ab}_{(1)} - \frac{1}{2} \left\{ A^{ja}, \left[A^{kc}, \left[\mathscr{M}, A^{jb} \right] \right] \right\} \Pi^{ab}_{(2)} \\ &+ \frac{1}{6} \left(\left[A^{ja}, \left[\left[\mathscr{M}, \left[\mathscr{M}, A^{jb} \right] \right], A^{kc} \right] \right] - \frac{1}{2} \left[\left[\mathscr{M}, A^{ja} \right], \left[\left[\mathscr{M}, A^{jb} \right], A^{kc} \right] \right] \right) \Pi^{ab}_{(3)} + \dots \end{split}$$

Here $\Pi_{(n)}^{ab}$ is a symmetric tensor which contains meson-loop integrals with the exchange of a single meson: A meson of flavor *a* is emitted and a meson of flavor *b* is reabsorbed. $\Pi_{(n)}^{ab}$ descomposes into flavor singlet, flavor **8** and flavor **27** representations [2].

2. Results and Conclusions

We have computed the renormalization of the baryon axial vector current in the framework of heavy baryon chiral perturbation theory in the large– N_c limit. The matrix elements of the space components of A^{kc} between SU(6) symetric states give the actual values of the axial vector couplings. For $N_c = 3$ and $N_f = 3$ the couplings g_A of barions with corrections at relative orders N_c , $1/N_c$, $1/N_c^3$ and $1/N_c^3$ for flavor singlet contribution are shown in Table 1.

		Singlet			
Process	$\mathcal{O}N_c$	$\mathcal{O}(1/N_c)$	$\mathcal{O}(1/N_c^2)$	$\mathcal{O}(1/N_c^3)$	Total
$n \rightarrow p e^- \bar{v}_e$	1.271	-0.1138	0.1402	-0.0256	1.272
$\Sigma^+ ightarrow \Lambda e^+ v_e$	0.615	-0.0396	0.0663	0.0111	0.653
$\Sigma^- ightarrow \Lambda e^- ar v_e$	0.598	-0.0266	0.0446	0.0074	0.624
$\Lambda ightarrow pe^- ar{v}_e$	-0.941	0.0837	-0.0855	0.0389	-0.904
$\Sigma^- ightarrow ne^- ar v_e$	0.330	0.0014	0.0188	0.0239	0.375
$\Xi^- ightarrow \Lambda e^- ar v_e$	0.212	-0.0423	0.0179	-0.0483	0.139
$\Xi^- ightarrow \Sigma^0 e^- ar v_e$	0.868	-0.0522	0.0643	-0.0117	0.869
$\Xi^0 o \Sigma^+ e^- ar u_e$	1.310	-0.0998	0.1231	-0.0225	1.312

Table 1: Corrections at relative order for the axial vector couplings of the baryons

References

- [1] R. Flores-Mendieta, C. P. Hofmann, E. Jenkins, and A. V. Manohar, Phys. Rev. D 62, 034001 (2000).
- [2] R. Flores-Mendieta, C. P. Hofmann, Phys. Rev. D 74, 094001 (2006).