

## PoS

# Observation of $B_s^0 \to D_s^{*-}\pi^+$ , $B_s^0 \to D_s^{(*)-}\rho^+$ and $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ and Estimate of $\Delta\Gamma_{CP}$ at Belle

### Sevda Esen\*†

University of Cincinnati E-mail: esens@mail.uc.edu

The large data sample being recorded with the Belle detector at the  $\Upsilon(5S)$  energy provides a unique opportunity to study the less-well-known  $B_s^0$  meson decays. Following our recent measurement of  $B_s^0 \rightarrow D_s^- \pi^+$  in a sample of 23.6 fb<sup>-1</sup>, we extend the analysis to include decays with photons in the final state. Using the same sample, we report the first observation of three other dominant exclusive  $B_s^0$  decays, in the modes  $B_s^0 \rightarrow D_s^{*-} \pi^+$ ,  $B_s^0 \rightarrow D_s^- \rho^+$  and  $B_s^0 \rightarrow D_s^{*-} \rho^+$ . We measure their respective branching fractions and, using helicity-angle distributions, the longitudinal polarization fraction of the  $B_s^0 \rightarrow D_s^{*-} \rho^+$  decay.

We also present a measurement of the branching fractions for the decays  $B_s^0 \to D_s^{(*)+} D_s^{(*)-}$ . In the heavy quark limit, this branching fraction is directly related to the width difference between the  $B_s$  *CP*-even and *CP*-odd eigenstates.

35th International Conference of High Energy Physics July 22-28, 2010 Paris, France

\*Speaker. <sup>†</sup>For Belle Collaboration.

#### 1. Introduction

Beginning in 2005, the Belle experiment running KEKB  $e^+e^-$  collider [1] has recorded several data sets at the center-of-mass energy corresponding to the  $\Upsilon(5S)$  resonance. Belle has used this data sets to measure several  $B_s^0$  properties and branching fractions. A total of 120 fb<sup>-1</sup> at the  $\Upsilon(5S)$  ( $\sqrt{s} \approx 10.87$  GeV) has been recorded. The results presented here correspond to the first 23.6 fb<sup>-1</sup>.

The total  $e^+e^- \rightarrow b\bar{b}$  cross section at the  $\Upsilon(5S)$  energy was measured to be  $\sigma_{b\bar{b}} = (302 \pm 14)$  pb [2, 3], with the fraction  $f_s = \sigma(e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)})/\sigma_{b\bar{b}} = (19.3 \pm 2.9)\%$  [4]. The dominant  $B_s^0$  production mode is  $e^+e^- \rightarrow B_s^*\bar{B}_s^*$ , with a fraction  $f_{B_s^*\bar{B}_s^*} = (90.1^{+3.8}_{-4.0} \pm 0.2)\%$  of the  $b\bar{b} \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$  events [5]. Thus for 23.6 fb<sup>-1</sup> the total number of  $e^+e^- \rightarrow B_s^*\bar{B}_s^*$  events is  $(1.24 \pm 0.2) \times 10^6$ .

All signal  $B_s^0$  decays are fully reconstructed from final-state particles using two quantities: the beam-energy-constrained mass  $M_{bc} = \sqrt{E_b^2 - p_B^2}$ , and the energy difference  $\Delta E = E_B - E_b$ , where  $p_B$  and  $E_B$  are the reconstructed momentum and energy of the  $B_s^0$  candidate, and  $E_b$  is the beam energy. These quantities are evaluated in the  $e^+e^-$  center-of-mass frame. Although the  $B_s^*$  always decays to  $B_s^0 \gamma$ , the  $\gamma$  is not reconstructed because of its extremely low momentum.

### 2. Observation of $B_s^0 \to D_s^{*-}\pi^+$ and $D_s^{(*)-}\rho^+$ Decays and Polarization Measurement of $B_s^0 \to D_s^{*-}\rho^+$

Three CKM-favored decays with relatively large branching fractions,  $B_s^0 \to D_s^{*-}\pi^+$  and  $D_s^{(*)-}\rho^+$ , have been observed recently by Belle [6]. Three  $D_s^+$  decay modes are considered:  $\phi(\to K^+K^-)\pi^+$ ,  $K_S(\to \pi^+\pi^-)K^+$  and  $K^{*0}(\to K^+\pi^-)K^+$ . Since only four charged tracks and up to one  $\gamma$  and  $\pi^0$ are required, these final states have relatively large signals. The continuum events are removed using the ratio of the second to zeroth Fox-Wolfram moments [7]. This ratio differs for spherical *B* events and jet-like continuum events.

Only one  $B_s^0$  candidate is allowed per event. This candidate is chosen based on the intermediateparticle reconstructed masses. The  $M_{bc}$  and  $\Delta E$  distributions of the selected  $B_s^0$  candidates are shown in Figure 1. For the  $B_s^0 \rightarrow D_s^{*-}\rho^+$  candidates, the helicity angles  $\theta_{D_s^{*-}}$  and  $\theta_{\rho^-}$  are also reconstructed. These are defined as the angle between the  $D_s^-$  or  $\pi^+$  and the opposite direction of the  $B_s^0$  in the  $D_s^{*-}$  or  $\rho^-$  rest frame. The distributions of  $\cos \theta_{D_s^{*-}}$  and  $\cos \theta_{\rho^-}$  are fitted to determine the longitudinal polarization fraction  $f_L$  (see Table 1).

### **3.** Observation of $B_s \rightarrow D_s^{(*)-} D_s^{(*)+}$ Decays and a Determination of the $\Delta \Gamma_s$

Decays of  $B_s \to D_s^{(*)-} D_s^{(*)+}$  are interesting due to their large CP-even fraction. The pure CPeven  $D_s^- D_s^+$  state and predominantly CP-even  $D_s^* D_s^{(*)}$  states are Cabibbo-favored and expected to dominate the width difference of the  $B_s^0 - \bar{B}_s^0$  system. In the heavy quark limit, assuming negligible CP violation, the relative width difference is  $\Delta \Gamma_s^{CP} / \Gamma_s = 2\mathscr{B} / (1 - \mathscr{B})$ , where  $\mathscr{B}$  is the total branching fraction of  $B_s \to D_s^{(*)-} D_s^{(*)+}$  decays [8].

For this study [9],  $D_s^+$  candidates are reconstructed in six modes,  $\phi \pi^+$ ,  $K_S K^+$ ,  $K^{*0}K^+$ ,  $\phi \rho^+$ ,  $K^{*+}K_S$  and  $K^{*+}K^{*0}$ .  $B_s^0$  candidates are reconstructed from two oppositely charged  $D_s^{(*)}$  mesons. As the daughter photon of the  $D_s^*$  has very low momentum, more than half of the events yield more than one  $B_s^0$  candidate sharing the same  $D_s$  pair. Only one candidate per event is selected





**Figure 1:** Projections of  $B_s^* \bar{B}_s^*$  signal region in  $M_{bc}$  and  $\Delta E$  for fits of  $B_s^0$  to  $D_s^{*-} \pi^+$  (top-left),  $D_s^- \rho^+$  (bottom-left), and  $D_s^{*-} \rho^+$  (top-right). The bottom-right figure shows the helicity distributions for  $D_s^{*-} \rho^+$  mode. The solid-blue line represents the total fit, while the red-dashed(black-dotted) curve is the signal(background).

using a selection criteria based on  $M_{D_s}$  and  $M_{D_s^*} - M_{D_s}$  information. After rejecting continuum events using a Fisher discriminant based on a set of modified Fox-Wolfram moments [7, 10], the remaining background events are largely  $B_{(s)} \rightarrow D_s^{(*)}X$  decays, where X is an accidental particle combination with a reconstructed mass within the  $D_s$  mass window. The  $B_s^0 \rightarrow D_s^- D_s^+$ ,  $D_s^{*-} D_s^+$ , and  $D_s^{*-} D_s^{*+}$  modes are fitted simultaneously; the fit projections are shown in Figure 2.



**Figure 2:**  $\Delta E$  (top) and  $M_{bc}$  (bottom) distributions for  $D_s^- D_s^+$ ,  $D_s^- D_s^+$  and  $D_s^- D_s^+$ , from left to right respectively. The red-dashed curve represents correctly reconstructed signal events, the black curve is the total fit.

The signal yields, branching fractions, and resulting value of  $\Delta\Gamma/\Gamma_{CP}$  are listed in Table 1. Various systematic uncertainties are studied, and the resulting systematic errors are listed after the statistical errors. The second systematic error is due to uncertainty of  $f_s$  for  $B_s^0 \rightarrow D_s^{*-}\pi^+$ ,  $D_s^{(*)-}\rho^+$  modes. For  $B_s^0 \rightarrow D_s^{(*)-}D_s^{(*)+}$  modes, it also includes uncertainties of  $D_s$  branching fractions,  $\sigma_{\Upsilon(5S)}$ , and  $f_{B_s^*\bar{B}_s^*}$ . Our results are in good agreement with the theoretical predictions [11, 12] and existing measurements[13].

Esen

| Observation of $B^0_s \to D^{*-}_s \pi^+$ , $B^0_s \to D^{(*)-}_s \rho^+$ and $B^0_s \to D^{(*)+}_s D^{(*)-}_s \rho^+$ | and Estimate of $\Delta\Gamma_{CP}$ | Sevda |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|
| $Observation Of D_S \to D_S R, D_S \to D_S P and D_S \to D_S D_S$                                                      | $and Lstimule of \Delta CP$         | Sevua |

| Mode                                      | $N_{B_s^*\bar{B}_s^*}$ | S                    | ε                      | $\mathscr{B}(\%)$                                    | World Average               |
|-------------------------------------------|------------------------|----------------------|------------------------|------------------------------------------------------|-----------------------------|
| $\overline{B^0_s 	o D^{*-}_s \pi^+}$      | $53.4^{+10.3}_{-9.4}$  | 7.1                  | $9.13 \times 10^{-2}$  | $0.24^{+0.05}_{-0.04}\pm0.03\pm0.04$                 | 1 <sup>st</sup> Measurement |
| $B^0_s 	o D^s  ho^+$                      | $92.2^{+14.2}_{-13.2}$ | 8.2                  | $4.40 \times 10^{-2}$  | $0.85^{+0.13}_{-0.12} \pm 0.11 \pm 0.13$             | 1 <sup>st</sup> Measurement |
| $B^0_s 	o D^{*-}_s  ho^+$                 | $77.8^{+14.5}_{-13.4}$ | 7.4                  | $2.67 \times 10^{-2}$  | $1.19^{+0.22}_{-0.20}\pm0.17\pm0.18$                 | 1 <sup>st</sup> Measurement |
| $f_L(B^0_s \rightarrow D^{*-}_s \rho^+)$  | 1.                     | $05^{+0.0}_{-0.1}$   | $8 + 0.03 \\ 0 - 0.04$ |                                                      | 1 <sup>st</sup> Measurement |
| $\overline{B^0_s 	o D^s D^+_s}$           | $8.5^{+3.2}_{-2.6}$    | 6.2                  | $3.31 \times 10^{-4}$  | $1.03^{+0.39+0.15}_{-0.32-0.13}\pm0.21$              | $(1.04 \pm 0.35)\%$         |
| $B^0_s 	o D^{*-}_s D^+_s$                 | $9.2^{+2.8}_{-2.4}$    | 6.6                  | $1.35 \times 10^{-4}$  | $2.75^{+0.83}_{-0.71}\pm0.40\pm0.56$                 | 1 <sup>st</sup> Observation |
| $B^0_s \rightarrow D^{*-}_s D^{*+}_s$     | $4.9^{+1.9}_{-1.7}$    | 3.1                  | $0.643 \times 10^{-4}$ | $3.08^{+1.22}_{-1.04}{}^{+0.57}_{-0.58}{}^{\pm}0.63$ | 1 <sup>st</sup> Evidence    |
| $B^0_s \rightarrow D^{(*)-}_s D^{(*)+}_s$ | $22.6^{+4.7}_{-3.9}$   |                      |                        | $6.85^{+1.53}_{-1.30}\pm1.11^{+1.40}_{-1.41}$        | $(4.0 \pm 1.5)\%$           |
| $\Delta\Gamma_s/\Delta\Gamma$             | 0.14                   | $47^{+0.01}_{-0.02}$ | 36+0.042<br>30-0.041   |                                                      | $0.080 \pm 0.030$           |

**Table 1:** Summary of the results. Signal yields in the  $B_s^* \bar{B}_s^*$  production mode,  $N_{B_s^* \bar{B}_s^*}$ ; significances, S (including systematics); total signal efficiencies,  $\varepsilon$  (including all sub-decay branching fractions); and branching fractions,  $\mathscr{B}$ . The first error is statistical, while the latter two are systematic and arise from internal and external sources. The significance  $S = \sqrt{(-2\ln(L_0/L_{max}))}$ , where  $L_0(L_{max})$  are likelihood values when the signal yield is fixed to zero (floated).

### 4. Conclusion

We presented recent branching fraction measurements of  $B_s^0$  decays obtained from 23.6 fb<sup>-1</sup> of  $\Upsilon(5S)$  data recorded by the Belle experiment. Also, the longitudinal polarization fraction is measured for the  $B_s^0 \to D_s^{*-}\rho^+$  mode and  $\Delta\Gamma_s^{CP}/\Gamma_s$  is estimated using  $D_s^{(*)-}D_s^{(*)+}$  modes.

### References

- A. Abashian *et al.* (Belle Collaboration) Nucl. Instrum. Methods Phys. Res., Sect. A **479**, 117 (2002);
   S. Kurokawa and E. Kikutani Nucl. Instrum. Methods Phys. Res., Sect. A **499**,1 (2003).
- [2] A. Drutskoy et al. (Belle Collaboration) Phys. Rev. Lett. 98, 052001 (2007).
- [3] G. S. Huang et al. (CLEO Collaboration) Phys. Rev. D 75, 012002 (2007).
- [4] C. Amsler et al. (Particle Data Group) Phys. Lett. B 667, 1 (2008).
- [5] R. Louvot et al. (Belle Collaboration) Phys. Rev. Lett. 102, 021801 (2009).
- [6] R. Louvot et al. (Belle Collaboration) Phys. Rev. Lett. 104, 231801 (2010).
- [7] G. C. Fox and S. Wolfram Phys. Rev. Lett. 41, 1581 (1978).
- [8] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63, 114015 (2001); I. Dunietz, Phys. Rev. D 52, 3048 (1995); R. Aleksan *et al.*, Phys. Lett. B 316, 567 (1993).
- [9] S. Esen et al. (Belle Collaboration) Phys. Rev. Lett. 105, 201802 (2010).
- [10] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
- [11] A. Deandrea et al. Phys. Lett. B 318, 549 (1993).
- [12] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007), 072.
- [13] T. Aaltonen *et al.* (CDF Collaboration), Phys. Rev. Lett. **100**, 021803 (2008); V. M. Abazov *et al.* (D0 Collaboration), Phys. Rev. Lett. **102**, 091801 (2009).