PROCEEDINGS OF SCIENCE

Recent results of charmonium decays from BESIII

Rong-Gang PING*[†]

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China E-mail: pingrg@ihep.ac.cn

Using $(106 \pm 4) \times 10^6 \psi'$ decays collected at BESIII/BEPCII, some interesting results are obtained. The branching fractions of $\chi_{cJ} \to \pi^0 \pi^0$, $\eta \eta$, $4\pi^0$ are measured, and the precisions are improved. The decays of $\chi_{c1} \to \phi \phi$, $\omega \omega$, $\omega \phi$ are observed for the first time, the precision of branching fractions for $\chi_{c0}, \chi_{c2} \to \phi \phi$, $\omega \omega$ are improved.

35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010 Paris France

^{*}Speaker.

[†]Represent the BES Collaboration.

1. Introduction

The analyses reported in this talk were performed based on ψ' events collected with BESIII detector at the upgraded BEPC (BEPCII) in the year of 2009. The total number of decays is $(106 \pm 4) \times 10^6$ [1].

2. $\chi_{cJ} \rightarrow \pi^0 \pi^0, \eta \eta$, and $4\pi^0$

 χ_{cJ} decays into pseudoscalar meson pairs (*PP*) have been extensively studied in the framework of perturbative quantum chromodynamics (pQCD). It turns out that the measured decay widths of $\chi_{cJ} \rightarrow PP$ can not explained theoretically. Recently, the color-octet decay mechanism is proposed, whose contributions to the decay widths of χ_{cJ} (J = 0, 2) $\rightarrow \pi^0 \pi^0$, $\eta \eta$ are predicted [2].

Using $106 \times 10^6 \psi'$ decays collected with the BESIII detector, the decays $\chi_{cJ} \to \pi^0 \pi^0$, $\eta \eta$ (J = 0,2) are studied via the decay $\psi' \to 5\gamma$ [1]. The two π^0/η s are reconstructed with four photons selected by requiring the $\sqrt{P_1^2(\pi^0/\eta) + P_2^2(\pi^0/\eta)}$ having a minimum value in all possible photon's combinations, where $P_i(\pi^0/\eta) = (M_{\gamma\gamma} - M_{\pi^0/\eta})/\sigma_{\gamma\gamma}$, and $\sigma_{\gamma\gamma}$ is the mass resolution for two photons. Figures 1(a) and 1(b) show the invariant mass distributions of $m_{\pi^0\pi^0}$ and $m_{\eta\eta}$, respectively. The signals of χ_{c0} and χ_{c2} are clearly observed. The χ_{c1} decays into two pseudoscalar pairs are suppressed due to the spin-parity conservation. The branching fractions are measured to be $Br(\chi_{c0} \to \pi^0\pi^0) = (3.23 \pm 0.03 \pm 0.23 \pm 0.14) \times 10^{-3}$, $Br(\chi_{c2} \to \pi^0\pi^0) = (8.8 \pm 0.2 \pm 0.6 \pm 0.4) \times 10^{-4}$, $Br(\chi_{c0} \to \eta\eta) = (3.44 \pm 0.10 \pm 0.24 \pm 0.20) \times 10^{-3}$ and $Br(\chi_{c2} \to \pi^0\pi^0) = (6.5 \pm 0.4 \pm 0.5 \pm 0.3) \times 10^{-4}$, where the uncertainties are statistical, systematic in this measurement, and systematic due to the branching fractions of $\psi' \to \gamma \chi_{cJ}$.

The decays of $\chi_{cJ} \to 4\pi^0$ are studied with the final state $\psi' \to 9\gamma$, where the candidates of $4\pi^0$ are reconstructed with eight photons by requiring the χ^2 combination $[\chi^2 = \sum_i P_i^2(\pi^0)]$ to have a minimum value. Figure 1(c) shows the distribution of $m_{4\pi^0}$, in which the decays $\chi_{cJ} \to K_S K_S \to 4\pi^0$ are removed. The branching fractions are measured to be $Br(\chi_{cJ} \to 4\pi^0) = (3.42 \pm 0.07 \pm 0.45, 0.60 \pm 0.03 \pm 0.09, 1.13 \pm 0.04 \pm 0.15) \times 10^{-3}$ for J = (0, 1, 2) respectively. The results provide information on the decay mechanism of χ_{cJ} states into pseudoscalars.

(a) The radiative photon energy spec- (b) The radiative photon energy spec- (c) The radiative photon energy spectrum of selected $\chi_{cJ} \rightarrow \pi^0 \pi^0$. trum of selected $\chi_{cJ} \rightarrow \eta \eta$.

Figure 1: The radiative photon energy spectrum of selected $\chi_{cJ} \rightarrow \pi^0 \pi^0$, $\eta \eta$ and $4\pi^0$, where the points with error bars are data, and the solid curves are the fitted results, the dashed curves are the fitted backgrounds.

Figure 2: The invariant mass distribution of $m_{\gamma V}$, $V = \phi$, ρ , ω . Dots with error bars are data; histograms are the fitted results; dash histograms are signals; shaded histograms are backgrounds estimated with the vector sidebands.

Figure 3: The distributions of $\cos \Theta$ for $(a): \chi_{c1} \rightarrow \gamma \phi$, $(b): \chi_{c1} \rightarrow \gamma \rho$ and $(c): \chi_{c1} \rightarrow \gamma \omega$ (c). The points with error bars are data, and shaded histograms are backgrounds, and solid line histograms are the fitted results.

3. $\chi_{cJ} \rightarrow \gamma V (V = \phi, \rho, \omega)$

Decays of $\chi_{cJ} \rightarrow \gamma V$ ($V = \phi, \rho, \omega$) provide an additionally ideal place to study the χ_{cJ} decay mechanisms. The branching fractions of $\chi_{cJ} \rightarrow \gamma V$ are extensively studied in the framework of QCD[3], pQCD[4] and QCD+QED [4] pictures. However, the previously experimental results [5] are an order of magnitude higher than these theoretical predictions.

The candidates of vector meson $(V = \phi, \rho, \omega)$ are reconstructed with the decay $\phi \to K^+K^-$, $\rho^0 \to \pi^+\pi^-$ and $\omega \to \pi^+\pi^-\pi^0$. Then candidates of χ_{cJ} signals are reconstructed by looking at the mass spectrum of vector meson and energic photon as shown in Fig. 2. The $\chi_{c1} \to \gamma \phi$, $\gamma \rho$ and $\gamma \omega$ are significantly observed. Their branching fractions are measured to be $Br(\chi_{c1} \to \gamma V) = (27.3 \pm 5.5, 241 \pm 14, 73.5 \pm 7.6) \times 10^{-6}$ for $V = \phi$, ρ and ω , respectively. Where the errors are only statistical. The decay $\chi_{c1} \to \gamma \phi$ is observed for the first time. Decays of $\chi_{c0}, \chi_{c2} \to \gamma V$ are not observed. The upper limits at the 90% C.L. are set as $Br(\chi_{c0} \to \gamma V) < (14.8, 9.5, 11.7) \times 10^{-6}$ and $Br(\chi_{c2} \to \gamma V) < (7.8, 19.7, 5.8) \times 10^{-6}$ for $V = (\phi, \rho, \omega)$, respectively.

Polarizations of vector meson produced from χ_{c1} decays are measured. Figure 3 shows the helicity angular distributions $\cos \Theta$ for ϕ , ρ and ω meson, respectively. Where Θ is defined as the angle between the vector meson flight direction in the χ_{cJ} rest frame and either the π/K^+ direction in the ρ^0/ϕ rest frame or the normal to the ω decay plane in the ω rest frame. The longitudinal (transverse) polarization exhibits a $\cos^2 \Theta$ ($\sin^2 \Theta$) dependence. Helicity distributions in Fig. 3 indicate that the longitudinal polarization dominates the vector meson production from χ_{c1} decays.

Figure 4: In plots, dots with error bars or histograms are data; shaded histograms are backgrounds estimated with the vector meson sidebands.

4. Observation of $\chi_{cJ} \rightarrow \phi \phi$, $\omega \omega$, and $\omega \phi$

 χ_{cJ} decays into vector meson pairs serves as laboratory to test the color-octet decay mechanism [6]. The branching fractions still remain to be a puzzle to understand within QCD theory. The previous measurements show that the χ_{cJ} (J = 0, 2) have larger branching fractions to decay into these final states [7, 8]. Especially, for the decays of $\chi_{c1} \rightarrow \omega \omega, \phi \phi$, they are expected to be highly suppressed due to helicity selection rule [9]. For the $\chi_{cJ} \rightarrow \omega \phi$, they are the doubly OZI suppressed decays, and they are still not observed in experiment. The large ψ' data sample at BESIII offers opportunity to search for these suppressed decays.

Figure 4(a) shows the mass spectrum of $\phi\phi$ reconstructed via the decay $\psi' \rightarrow \gamma 2(K^+K^-)$. In the scatter plot of the mass K^+K^- versus other two kaon, the $\phi\phi$ signals are clearly seen. After requiring the two K^+K^- pairs in the ϕ mass region, the χ_{cJ} (J = 0, 1, 2) signals are clearly seen in the distribution of invariant mass of $\phi\phi$. The contribution from nonresonance decays of $\chi_{cJ} \rightarrow$ $2(K^+K^-)$ and $\chi_{cJ} \rightarrow \phi K^+K^-$ can be estimated with the ϕ sidebands as shown in Fig. 4(a) (shaded histogram). The branching fractions are measured to be $Br(\chi_{cJ} \rightarrow \phi\phi) = (0.8 \pm 0.04, 0.42 \pm$ $0.03, 1.15 \pm 0.04) \times 10^{-3}$ for J = (0, 1, 2), respectively. Where the errors are only statistical.

Figure 4(b) shows the mass spectrum of $\omega\omega$ reconstructed via the decay $\psi' \to 5\gamma 2(\pi^+\pi^-)$. Where the two π^0 candidates are reconstructed with the four photons with the masses closest to the two π^0 masses, i.e. $\sqrt{(M_{\gamma\gamma}^{(1)} - M_{\pi^0})^2 + (M_{\gamma\gamma}^{(2)} - M_{\pi^0})^2}$, then an ω is reconstructed with a combination of $\pi^+\pi^-\pi^0$ selected by minimizing $|M_{\pi^+\pi^-\pi^0} - M_{\omega}|$. The other combination of $\pi^+\pi^-\pi^0$ is regarded as a candidate of an ω signal. After requiring the both ω s falling into the ω mass window $|M_{\pi^+\pi^-\pi^0} - M_{\omega}| < 0.04$ GeV, the χ_{cJ} (J = 0, 1, 2) signals are clearly observed at the mass spectrum $\omega\omega$. The backgrounds from $\psi' \to \pi^+\pi^-J/\psi \to 5\gamma 2(\pi^+\pi^-)$ are rejected by requiring $|M_{\pi^+\pi^-}^{recoil} - M_{J/\psi}| > 0.008$ GeV, and the nonresonance contribution is estimated via the sidebands of ω mass windows.

Figure 4(c) shows the mass spectrum of $\omega\phi$ reconstructed via the decay $\psi' \to 3\gamma K^+ K^- \pi^+ \pi^-$, where a ϕ is reconstructed with the decay $\phi \to K^+ K^-$, while ω is reconstructed with the decay $\omega \to \pi^+ \pi^- \pi^0$, where the π^0 is reconstructed with two photons in the three selected photons by minimizing the $\sqrt{(M_{\gamma\gamma} - M_{\pi^0})^2 - (M_{\gamma\gamma\pi^+\pi^-} - M_{\omega})^2}$. After requiring the mass widows $|M_{\pi^+\pi^-\pi^0} - M_{\omega}| < 0.04$ GeV and $|M_{K^+K^-} - M_{\phi}| < 0.015$ GeV, the χ_{cJ} (J = 0, 1, 2) signals are observed at the mass spectrum of $\omega\phi$. The non- ϕ/ω 's contribution are studied with the ϕ/ω sidebands.

5. Summary

Using $(106 \pm 4) \times 10^6 \psi'$ decays collected at BESIII/BEPCII, we have obtained many interesting results. The branching fractions of $\chi_{cJ} \to \pi^0 \pi^0$, $\eta \eta$, $6\pi^0$ are measured. The decays of $\chi_{c1} \to \phi \phi$, $\omega \omega$, $\omega \phi$ are observed for the first time.

Acknowledgments

I would like to thank my colleagues of BES Collaboration for the efforts in performing these analyses. I would like to thank the organizers of ICHEP2010.

References

- [1] M. Ablikim, et al, (BES Collaboration), Phys. Rev. D 81 (2010) 052005 .
- [2] Jan Bolz, Peter Kroll, Gerhard A. Schuler, *Phys. Lett.* B **392** (1997) 198; Jan Bolz, Peter Kroll, Gerhard A. Schuler, *Eur. Phys. J. C* **2** (1998) 705.
- [3] Y. J. Gao, Y. J. Zhang, and K. T. Chao, hep-ph/0701009.
- [4] Y. J. Gao, Y. J. Zhang, and K. T. Chao, Chin. Phys. Lett. 23 (2006) 2376.
- [5] J. V. Bennett, et al, (CLEO Collaboration) Phys. Rev. Lett. 101 (2008) 151801.
- [6] Wong S M H, Eur. Phys. J. C 14 (2000) 643.
- [7] M. Ablikim, et al, (BES Collaboration), Phys. Lett. B 642 (2006) 197.
- [8] M. Ablikim, et al (BES Collaboration), Phys. Lett. B 630 (2005) 7.
- [9] S. J. Brodsky, G. P. Lepage, Phys. Rev. D 24 (1981) 2848.