

PS

Search for $B_s^0 \rightarrow J/\psi f_0(980)$ and $B_s^0 \rightarrow hh$ decays at Belle

Jean Wicht* †

High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)
E-mail: jwicht@post.kek.jp

We report on searches for the decays $B_s^0 \to J/\psi f_0(980)$ and B_s^0 decaying to K^+K^- , $K_S^0K_S^0$, $K^-\pi^+$, or $\pi^+\pi^-$ final states using 23.6 fb⁻¹ of data recorded at the $\Upsilon(5S)$ resonance by the Belle detector at the KEKB accelerator. We measure $\mathscr{B}(B_s^0 \to K^+K^-) = (3.8^{+1.0}_{-0.9} \pm 0.5(\text{syst}) \pm 0.5(f_s)) \times 10^{-5}$ with 5.8 standard deviations. We did not observe any significant signals in the other modes, and we compute 90% upper limits on their branching fractions: $\mathscr{B}(B_s^0 \to J/\psi f_0(980)) < 1.63 \times 10^{-4}$, $\mathscr{B}(B_s^0 \to K^-\pi^+) < 2.6 \times 10^{-5}$, $\mathscr{B}(B_s^0 \to \pi^+\pi^-) < 1.2 \times 10^{-5}$ and $\mathscr{B}(B_s^0 \to K_S^0K_S^0) < 3.3 \times 10^{-5}$. PoS(ICHEP 2010)219

35th International Conference of High Energy Physics July 22-28, 2010 Paris, France

*Speaker.

[†]On behalf of the Belle Collaboration.

1. Introduction

The Belle detector [1] has recently collected a large sample of e^+e^- collisions (~ 120 fb⁻¹) produced by the KEKB accelerator [2] at the energy of the $\Upsilon(5S)$ resonance ($E_{\rm CM} \sim 10.58$ GeV). Contrary to the $\Upsilon(4S)$ resonance which sits just above the $B\bar{B}$ threshold ($B = B^+, B^0$), the $\Upsilon(5S)$ resonance lies above the $B_s^0 \bar{B}_s^0$ and $B_s^* \bar{B}_s^*$ thresholds. The CLEO collaboration indeed proved that B_s^0 mesons were produced at the $\Upsilon(5S)$ resonance [3] allowing *B*-factories to compete with hadron colliders for the study of B_s^0 decays and properties. In this report, we search for the decays $B_s^0 \to J/\psi f_0(980)$ and $B_s^0 \to hh$ using about one fifth (23.6 fb⁻¹) of our total integrated luminosity collected at the $\Upsilon(5S)$.

2. Measurement of the number of B_s^0 mesons

The number of $b\bar{b}$ pairs is measured with a continuum subtraction method. We use data collected ~ 60 MeV below the $\Upsilon(4S)$ resonance where $B\bar{B}$ pairs cannot be produced. The $b\bar{b}$ cross-section is computed according to the following formula:

$$\sigma_{b\bar{b}}^{\Upsilon(5S)} = \frac{N_{b\bar{b}}^{\Upsilon(5S)}}{\mathscr{L}_{\Upsilon(5S)}} = \frac{1}{\mathscr{L}_{\Upsilon(5S)}\varepsilon_{\Upsilon(5S)}^{b\bar{b}}} \left(N_{\text{hadr}}^{\Upsilon(5S)} - N_{\text{hadr}}^{\text{cont.}} \frac{\mathscr{L}_{\Upsilon(5S)}}{\mathscr{L}_{\text{cont.}}} \frac{E_{\text{cont.}}^2}{E_{\Upsilon(5S)}^2} \frac{\varepsilon_{\Upsilon(5S)}^{q\bar{q}}}{\varepsilon_{\text{cont.}}^{q\bar{q}}} \right),$$
(2.1)

where *N* are the number of hadronic events counted in data, \mathscr{L} the integrated luminosities, *E* the center-of-mass (CM) energies and ε the different reconstruction efficiencies. The $b\bar{b}$ reconstruction efficiency is very close to 100% while the continuum $(q\bar{q}, q = u, d, s, c)$ reconstruction efficiencies are ~ 90%. We obtain $\sigma_{b\bar{b}}^{\Upsilon(5S)} = (0.302 \pm 0.015)$ nb which is about four times smaller than at the $\Upsilon(4S)$ resonance where $b\bar{b}$ cross-section is about 1.1 nb.

The fraction of $B_s^0 \bar{B}_s^0$ pairs among the $b\bar{b}$ events (f_s) is studied with D_s^{\pm} mesons. We take advantage of the fact that B_s^0 mesons have a much larger branching fraction to D_s^{\pm} ($\mathscr{B}(B_s^0 \to D_s^{\pm}X) = (92 \pm 11)\%$ [3]) than B^+ and B^0 mesons ($\mathscr{B}(B \to D_s^{\pm}X) = (8.3 \pm 0.8)\%$ [6]). We extract f_s from the following formula:

$$\mathscr{B}(\Upsilon(5S) \to D_s^{\pm}X)/2 = f_s \times \mathscr{B}(B_s^0 \to D_s^{\pm}X) + (1 - f_s) \times \mathscr{B}(B \to D_s^{\pm}X)$$
(2.2)

where we measure $\mathscr{B}(\Upsilon(5S) \to D_s^{\pm}X)$ using continuum subtraction [4]. Taking into account a previous result from CLEO [3], the Particle Data Group computed $f_s = (18.0 \pm 1.3 \pm 3.2)\%$ [6]. The number of B_s^0 mesons in $L_{\text{int}} = 23.6 \text{ fb}^{-1}$ can therefore be computed as $N_{B_s^0} = 2 \times L_{\text{int}} \times \sigma_{b\bar{b}}^{\Upsilon(5S)} \times f_s = (2.8 \pm 0.4) \times 10^6$. The uncertainty is mainly due to the large uncertainty on $\mathscr{B}(B_s^0 \to D_s^{\pm}X)$ in the determination of f_s .

 B_s^0 mesons can be produced through three $\Upsilon(5S)$ decays: $\Upsilon(5S) \to B_s^* \bar{B}_s^*$, $B_s^* \bar{B}_s^0$ and $B_s^0 \bar{B}_s^0$, where the B_s^* mesons decay to B_s^0 by emitting a ~ 50 MeV photon. We measure the different production fractions by fully reconstructing B_s^0 mesons in the high-statistics $B_s^0 \to D_s^- \pi^+$ mode using the well-known *B*-factory variables $M_{\rm bc} = \sqrt{(E_{\rm CM}/2)^2 - p_{B_s^0}^{\rm CM}}$ and $\Delta E = E_{B_s^0}^{\rm CM} - E_{\rm CM}/2$. Since we do not reconstruct the photon from the B_s^* decay, the three channels peak at different positions in the $M_{\rm bc}$ - ΔE plane and are especially well separated in $M_{\rm bc}$. We measure $f_{B_s^*\bar{B}_s^*} = (90.1^{+3.8}_{-4.0} \pm 0.2)\%$ and $f_{B_s^*\bar{B}_s^0} = (7.3^{+3.3}_{-3.0} \pm 0.1)\%$ [5]. B_s^0 decays are therefore mainly searched in $\Upsilon(5S) \to B_s^*\bar{B}_s^*$ decays.

Figure 1: M_{bc} and ΔE distributions of $B_s^0 \rightarrow K^+K^-$ candidates together with fit results. The solid red curve shows the signal fit function while the dashed gray curve shows the continuum contribution.

3. Search for $B_s^0 \rightarrow hh$

We search for $B_s^0 \to hh$ where hh can be K^+K^- , $K_S^0K_S^0$, $K^-\pi^+$ and $\pi^+\pi^-$ [7]. $B_s^0 \to K^+K^$ is related to $B^0 \to \pi^+\pi^-$ by SU(3) symmetry. Comparing CP asymmetries can probe the presence of New Physics in the decay [8]. Using the *U*-spin symmetry, one can measure the CKM angle γ (ϕ_3) [9]. K_S^0 mesons are reconstructed in the $K_S^0 \to \pi^+\pi^-$ decay mode. The dominant background arises from continuum and is suppressed with a likelihood formed from modified Fox-Wolfram moments [10]. $B_s^0 \to K^+K^-$ candidates together with fit results are shown on Fig. 1. We observe $24 \pm 6 B_s^0 \to K^+K^-$ events corresponding to a significance of 5.8σ . We measure $\mathscr{B}(B_s^0 \to K^+K^-) = (3.8^{+1.0}_{-0.9} \pm 0.5(syst) \pm 0.5(f_s)) \times 10^{-5}$. No significant signal is seen in the three other modes, and we set the following 90% CL upper limits: $\mathscr{B}(B_s^0 \to K^-\pi^+) < 2.6 \times 10^{-5}$, $\mathscr{B}(B_s^0 \to \pi^+\pi^-) < 1.2 \times 10^{-5}$ and $\mathscr{B}(B_s^0 \to K_S^0 K_S^0) < 3.3 \times 10^{-5}$. CDF searched for these modes [11, 12]: our measurement of $B_s^0 \to K^+K^-$ is in agreement, our limit on $B_s^0 \to K_S^0 K_S^0$ is more stringent but we are not competitive in the two other modes.

4. Search for $B_s^0 \rightarrow J/\psi f_0(980)$

 β_s , the *CP*-violating phase in the B_s^0 mixing, can be measured in a time-dependent study of $B_s^0 \to J/\psi f_0(980)$ and $B_s^0 \to J/\psi \phi$ decays [13]. The advantage of $B_s^0 \to J/\psi f_0(980)$ over $B_s^0 \to J/\psi \phi$ is that $B_s^0 \to J/\psi f_0(980)$ is a pure *CP*-eigenstate due to $f_0(980)$ quantum numbers being $J^P = 0^+$ (ϕ being 1⁻). No angular analysis of the decay is therefore required to distinguish the different *CP*-eigenstates. $B_s^0 \to J/\psi f_0(980)$ branching fraction is however $\sim 2-5$ times smaller than $B_s^0 \to J/\psi \phi$ [14, 15]. In our analysis, J/ψ mesons are reconstructed by combining opposite sign electrons or muons and $f_0(980)$ mesons by combining opposite sign pions. $B_s^0 \to J/\psi f_0(980)$ candidates are selected using ΔE and $M_{\pi\pi}$. Background mainly arises from continuum and *B* decays including a J/ψ meson ($B \to J/\psi X$). We also consider a possible non-resonant $B_s^0 \to J/\psi \pi^+\pi^-$ contribution that behaves as signal in ΔE but does not peak in $M_{\pi\pi}$. Data together with fit results are shown on Fig 2. No significant signal is seen (6.0 ± 4.4 events corresponding to 1.7σ), and we set the following 90% CL upper limit: $\mathscr{B}(B_s^0 \to J/\psi f_0(980)) \times \mathscr{B}(f_0(980) \to \pi^+\pi^-) < 1.63 \times 10^{-4}$.

Figure 2: ΔE and $M_{\pi\pi}$ distributions of $B_s^0 \rightarrow J/\psi f_0(980)$ candidates together with fit results. The solid black curve shows the total fit function. Other curves show the different background contributions: non-resonant $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ in dotted red, $B \rightarrow J/\psi X$ background in dashed yellow and sum of all backgrounds (non-resonant $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, $B \rightarrow J/\psi X$ and continuum) in dashed-dotted green.

5. Summary

We searched for $B_s^0 \to hh$ and $B_s^0 \to J/\psi f_0(980)$ decays in 23.6 fb⁻¹ of data collected by the Belle detector at the $\Upsilon(5S)$ resonance. We observed $B_s^0 \to K^+K^-$ decays with 5.8 standard deviations. We did not observe any significant signals in the other modes and improved the upper limit on $\mathscr{B}(B_s^0 \to K_S^0 K_S^0)$. Present and future *B*-factories can therefore play a role in the study of B_s^0 mesons.

References

- [1] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479 117 (2002).
- [2] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499 1 (2003).
- [3] M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett. 95, 261801 (2005).
- [4] A. Drutskoy et al. (Belle Collaboration), Phys. Rev. Lett. 98, 052001 (2007).
- [5] R. Louvot, J. Wicht, O. Schneider et al. (Belle collaboration), Phys. Rev. Lett. 102, 021801 (2009).
- [6] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
- [7] C.C. Peng et al. (Belle Collaboration), Phys. Rev. D 82, 072007 (2010).
- [8] D. London and J. Matias, Phys. Rev. D 70, 031502 (2004).
- [9] R. Fleischer, Phys. Lett. B 459, 306 (1999).
- [10] S.H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
- [11] A. Abulencia et al. (CDF collaboration), Phys. Rev. Lett. 97, 211802 (2006).
- [12] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 031801 (2009).
- [13] S. Stone and L. Zhang, arXiv:0909.5442v2 [hep-ex] (2009).
- [14] S. Stone and L. Zhang, PRD 79, 074024 (2009).
- [15] P. Colangelo, F. De Fazio, and W. Wang, Phys. Rev. D 81, 074001 (2010).