

PS

Improved Measurement of the Electroweak Penguin Process $B \rightarrow X_s \ell^+ \ell^-$

Cheng-Chin CHIANG**

National Taiwan University, department of Physics E-mail: markj@hep1.phys.ntu.edu.tw

We have performed a search for the decay $B \to X_s \ell^+ \ell^-$ using a pseudo-inclusive reconstruction technique. Using a data sample of $657 \times 10^6 B\overline{B}$ pairs, we observe a clear signal, including $238.3 \pm 26.4 \pm 2.3$ events in the mass region $M(X_s) < 2.0 \text{ GeV}/c^2$. The measured branching fraction is $\mathscr{B}(B \to X_s \ell \ell) = (3.33 \pm 0.80(\text{stat})^{+0.19}_{-0.24}(\text{syst})) \times 10^{-6}$; this result is restricted to the region $M(\ell^+ \ell^-) > 0.2 \text{ GeV}/c^2$.

PoS(ICHEP 2010)231

35th International Conference of High Energy Physics July 22-28, 2010 Paris, France

*Speaker.

[†]On behalf of the Belle Collaboration

1. Introduction

In the Standard Model (SM), the rare decay $B \to X_s \ell^+ \ell^-$ ($\ell = e, \mu$) proceeds through a $b \to s \ell^+ \ell^-$ transition, which is forbidden at tree level. On the other hand, the flavor-changing neutral current (FCNC) process can occur at higher order via electroweak penguin and W^+W^- box diagrams. Since only Wilson coefficients \mathcal{O}_7 , \mathcal{O}_9 and \mathcal{O}_{10} appear in the effective Hamiltonian, we can constrain these coefficients by $b \to s \ell^+ \ell^-$ transition and thus probe New Physics [1, 2]. Recently, the Belle and BaBar collaborations have both observed exclusive $B \to K \ell^+ \ell^-$ and $B \to K^* \ell^+ \ell^-$ decays [3, 4, 5, 6, 7], the inclusive $B \to X_s \ell^+ \ell^-$ decays are also measured [8, 9]. In this report, we improve the measurement of $B \to X_s \ell^+ \ell^-$ using a data sample of 657×10^6 BB pairs.

2. Event selection and signal extraction

We reconstruct inclusive $B \to X_s \ell^+ \ell^-$ decays with a dilepton pair $\ell^+ \ell^-$ ($e^+ e^-$ or $\mu^+ \mu^-$), and one of eighteen reconstructed hadronic states X_s . The hadronic states X_s consists of one K^{\pm} or K_s and up to four pions (at most one pion can be neutral): K^{\pm} , $K^{\pm}\pi^{\mp}$, $K^{\pm}\pi^{\mp}\pi^{0}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}\pi^{K}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{0}$, $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pi}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{0}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\mp}\pi^{0}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{K}$, $K^{0}_{s}\pi^{\pm}\pi^{K}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\pi}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\mp}\pi^{0}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{0}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{0}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\pi}$, $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\mp}\pi^{0}$, and $K^{0}_{s}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}$. Signal event candidates are characterized by the kinematic variable: the beam-energy-constrained mass, $M_{bc} = \sqrt{E^2_{beam} - P^{*2}_B}$, where E_{beam} is the run-dependent beam energy, and P^{*}_{B} is the momentum of the *B* candidate in the $\Upsilon(4S)$ center-of-mass (CM) frame.

Since there are large peaking backgrounds from charmonium *B* decays to $X_s J/\psi$ or $X_s \psi(2S)$, we remove these candidates with a dilepton mass in the regions $M_{ee(\gamma)} - M_{J/\psi} \in [-0.4, 0.15] \text{ GeV}/c^2$, $M_{ee(\gamma)} - M_{\psi(2S)} \in [-0.25, 0.1] \text{ GeV}/c^2$, $M_{\mu\mu} - M_{J/\psi} \in [-0.25, 0.1] \text{ GeV}/c^2$ and $M_{\mu\mu} - M_{\psi(2S)} \in [-0.15, 0.1] \text{ GeV}/c^2$. We also require $M_{e^+e^-} > 0.2 \text{ GeV}/c^2$ to remove the possible background from the radiative $B \to X_s \gamma$ decays or π^0 Dalitz decays. Another background source is from random combinations with semileptonic *B* decays ($b \to c \to s, d$). In this case, at least one of the leptons in $X_s \ell^+ \ell^-$ reconstruction is misidentified from another conjugate *B* decays. Since most of the semileptonic *B* decays produce a neutrino, we reject this background using missing mass, missing energy information, and the distance of two leptons along the positron beam (z axis). For continuum background $e^+e^- \to q\bar{q}$ (q = u, d, s and c) events, we use modified Fox-Wolfram moments [10] that are combined into a Fisher discriminant. This discriminant is subsequently combined with the probabilities for the cosine of the *B* flight direction in the CM frame, the energy difference $\Delta E = E_B^* - E_{\text{beam}} [E_B^*$ is the energy of the *B* candidate in the $\Upsilon(4S)$ CM frame] and χ^2 value for the *B* decay vertex to form a likelihood ratio $\Re = \mathcal{L}_s/(\mathcal{L}_s + \mathcal{L}_{q\bar{q}})$. Here, $\mathcal{L}_s (\mathcal{L}_{q\bar{q}})$ is a likelihood function for signal (continuum) events that is obtained from the signal (continuum) MC simulation.

We perform an extended unbinned maximum likelihood fit to the M_{bc} distribution in the region $M_{bc} > 5.20 \text{ GeV}/c^2$ to extract the signal. Other interesting measurements are the branching fraction of $B \rightarrow X_s \ell^+ \ell^-$ versus M_{X_s} and $q^2 (M_{\ell^+ \ell^-}^2)$ variables, we divide M_{X_s} and q^2 into several regions and use M_{bc} fit to determine their branching fractions, these results are shown on Fig. 1.

3. Summary

We have measured the branching fraction of $B \rightarrow X_s \ell^+ \ell^-$ to be $(3.33 \pm 0.8^{+0.19}_{-0.24}) \times 10^{-6}$ with

10.1 σ significance. The distributions of $d\mathscr{B}(B \to X_s \ell^+ \ell^-) vs. dM_{X_s}$ and $d\mathscr{B}(B \to X_s \ell^+ \ell^-) vs. dq^2$ are consistent with SM predictions. We have also measured the branching fractions of $B \to X_s \ell^+ e^$ and $B \to X_s \mu^+ \mu^-$ to be $(4.56 \pm 1.15^{+0.33}_{-0.4}) \times 10^{-6}$ and $(1.91 \pm 1.02^{+0.16}_{-0.18}) \times 10^{-6}$, respectively. The ratio of measured branching fraction $\mathscr{B}(B \to X_s e^+ e^-)/\mathscr{B}(B \to X_s \mu^+ \mu^-)$ is 2.39 ± 1.41 . This value with its error bar is within our MC assumption: $\mathscr{B}(B \to X_s e^+ e^-)/\mathscr{B}(B \to X_s \mu^+ \mu^-) = 1$; although the difference, the systematic error for $B \to X_s \ell^+ \ell^-$ efficiency is considered to be small.

The systematic errors (in the unit of percentage) are summarized in Table 1. There are three major sources of systematic errors: peaking backgrounds [from $B \rightarrow X_s J/\psi$, $X_s \psi(2S)$, $X_s \psi(3770)$, $X_s \psi(4040)$ and $X_s \psi(4160)$ decays], detector systematics (tracking and particle identification efficiencies) and MC modeling systematics [$\mathscr{B}(B \rightarrow K^{(*)}\ell^+\ell^-)$ assumption, $K^* - X_s$ transition and X_s decay fractions], etc.

Source	$B \rightarrow X_s e^+ e^-$	$B \rightarrow X_{s} \mu^{+} \mu^{-}$
Signal PDF	±0.3	± 0.1
$B \rightarrow X_s J/\psi, \ X_s \psi(2S)$	±1.2	± 0.9
$B \to X_s \psi(3770), X_s \psi(4040), X_s \psi(4160)$	± 0.9	± 0.9
$B ightarrow X_s \pi \pi, \ X_s \pi \ell u$	$^{+0.4}_{-0.5}$	$^{+0.2}_{-0.3}$
Self-cross-feed	± 0.1	± 0.1
Tracking efficiency	±3.6	±3.6
ℓ^{\pm} efficiency	± 2.1	± 2.2
K^{\pm} efficiency	± 0.4	± 1.0
π^{\pm} efficiency	±3.4	±3.0
K_s^0 efficiency	± 0.9	± 0.9
π^0 efficiency	± 0.5	± 0.5
\mathscr{R} requirement	±5.3	± 2.6
Fermi motion model	$^{+1.3}_{-4.9}$	$^{+0.6}_{-2.0}$
$K^* - X_s$ transition	$^{+2.3}_{-6.8}$	$^{+2.7}_{-7.1}$
X_s decay fractions	± 5.8	±5.8
X_s decay fractions with two or more kaons	±1.7	± 1.7
MC statistics	< 0.1	< 0.1
$B\overline{B}$ number	±1.4	± 1.4

Table 1: Systematic errors (in the unit of percentage) on the $B \to X_s e^+ e^-$ and $B \to X_s \mu^+ \mu^-$ branching fraction measurements.

References

- [1] A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. D 66, 034002 (2002).
- [2] T. Hurth, hep-ph/0212304, SLAC-PUB-9604 (2003).
- [3] A. Ali, hep-ph/0210183, CERN-TH/2002-284 (2002).
- [4] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 021801 (2002).

Figure 1: Upper left: Projection of the M_{bc} fit with a data sample containing $657 \times 10^6 B\overline{B}$ pairs. The signal component $B \to X_s \ell^+ \ell^-$ is shown in black line, the background $(b \to c \to s, d$ and continuum), peaking background $[B \to X_s J/\psi, X_s \psi(2S), X_s \psi(3770), X_s \psi(4040)$ and $X_s \psi(4160)]$, self-cross-feed components are shown in yellow, green, and blue solid shaded regions, respectively. Upper right: The $d\mathscr{B}(B \to X_s \ell^+ \ell^-)/dM_{X_s}$ distribution, the dot with error bars are data, the yellow shaded region is MC simulation. Lower: The $d\mathscr{B}(B \to X_s \ell^+ \ell^-)/dq^2 (M_{\ell^+ \ell^-}^2)$ distribution, the dot with error bars are data, the yellow shaded region is MC simulation.

- [5] B. Aubert et al. (BaBar Collaboration), hep-ex/0207082, SLAC-PUB-9323 (2002).
- [6] A. Ishikawa et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251801 (2006).
- [7] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 73, 092001 (2006).
- [8] M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72, 092005 (2005).
- [9] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 081802 (2004).
- [10] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in this paper are described in S. H. Lee *et al.* (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).