Improved Measurement of the Electroweak Penguin Process $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Cheng-Chin CHIANG*
National Taiwan University, department of Physics
E-mail: markj@hep1.phys.ntu.edu.tw

We have performed a search for the decay $B \rightarrow X_{s} \ell^{+} \ell^{-}$using a pseudo-inclusive reconstruction technique. Using a data sample of $657 \times 10^{6} B \bar{B}$ pairs, we observe a clear signal, including $238.3 \pm 26.4 \pm 2.3$ events in the mass region $M\left(X_{s}\right)<2.0 \mathrm{GeV} / c^{2}$. The measured branching fraction is $\mathscr{B}\left(B \rightarrow X_{s} \ell \ell\right)=\left(3.33 \pm 0.80(\text { stat })_{-0.24}^{+0.19}(\right.$ syst $\left.)\right) \times 10^{-6}$; this result is restricted to the region $M\left(\ell^{+} \ell^{-}\right)>0.2 \mathrm{GeV} / c^{2}$.

35th International Conference of High Energy Physics
July 22-28, 2010
Paris, France

[^0]
1. Introduction

In the Standard Model (SM), the rare decay $B \rightarrow X_{s} \ell^{+} \ell^{-}(\ell=e, \mu)$ proceeds through a $b \rightarrow s \ell^{+} \ell^{-}$transition, which is forbidden at tree level. On the other hand, the flavor-changing neutral current (FCNC) process can occur at higher order via electroweak penguin and $W^{+} W^{-}$box diagrams. Since only Wilson coefficients $\mathscr{O}_{7}, \mathscr{O}_{9}$ and \mathscr{O}_{10} appear in the effective Hamiltonian, we can constrain these coefficients by $b \rightarrow s \ell^{+} \ell^{-}$transition and thus probe New Physics [1, 2]. Recently, the Belle and BaBar collaborations have both observed exclusive $B \rightarrow K \ell^{+} \ell^{-}$and $B \rightarrow K^{*} \ell^{+} \ell^{-}$ decays [3, 4, 5, 6, 7], the inclusive $B \rightarrow X_{s} \ell^{+} \ell^{-}$decays are also measured [8, 9]. In this report, we improve the measurement of $B \rightarrow X_{s} \ell^{+} \ell^{-}$using a data sample of $657 \times 10^{6} \mathrm{BB}$ pairs.

2. Event selection and signal extraction

We reconstruct inclusive $B \rightarrow X_{s} \ell^{+} \ell^{-}$decays with a dilepton pair $\ell^{+} \ell^{-}\left(e^{+} e-\right.$ or $\left.\mu^{+} \mu^{-}\right)$, and one of eighteen reconstructed hadronic states X_{s}. The hadronic states X_{s} consists of one $K^{ \pm}$or K_{s} and up to four pions (at most one pion can be neutral): $K^{ \pm}, K^{ \pm} \pi^{0}, K^{ \pm} \pi^{\mp}, K^{ \pm} \pi^{\mp} \pi^{0}, K^{ \pm} \pi^{\mp} \pi^{ \pm}$, $K^{ \pm} \pi^{\mp} \pi^{ \pm} \pi^{0}, K^{ \pm} \pi^{\mp} \pi^{ \pm} \pi^{\mp}, K^{ \pm} \pi^{\mp} \pi^{ \pm} \pi^{\mp} \pi^{0}, K^{ \pm} \pi^{\mp} \pi^{ \pm} \pi^{\mp} \pi^{ \pm}, K_{s}^{0}, K_{s}^{0} \pi^{0}, K_{s}^{0} \pi^{ \pm}, K_{s}^{0} \pi^{ \pm} \pi^{0}, K_{s}^{0} \pi^{ \pm} \pi^{\mp}$, $K_{s}^{0} \pi^{ \pm} \pi^{\mp} \pi^{0}, K_{s}^{0} \pi^{ \pm} \pi^{\mp} \pi^{\mp}, K_{s}^{0} \pi^{ \pm} \pi^{\mp} \pi^{\mp} \pi^{0}$, and $K_{s}^{0} \pi^{ \pm} \pi^{\mp} \pi^{\mp} \pi^{ \pm}$. Signal event candidates are characterized by the kinematic variable: the beam-energy-constrained mass, $M_{\mathrm{cc}}=\sqrt{E_{\text {beam }}^{2}-P_{B}^{* 2}}$, where $E_{\text {beam }}$ is the run-dependent beam energy, and P_{B}^{*} is the momentum of the B candidate in the $\Upsilon(4 S)$ center-of-mass (CM) frame.

Since there are large peaking backgrounds from charmonium B decays to $X_{s} J / \psi$ or $X_{s} \psi(2 S)$, we remove these candidates with a dilepton mass in the regions $M_{e e(\gamma)}-M_{J / \psi} \in[-0.4,0.15] \mathrm{GeV} / c^{2}$, $M_{e e(\gamma)}-M_{\psi(2 S)} \in[-0.25,0.1] \mathrm{GeV} / c^{2}, M_{\mu \mu}-M_{J / \psi} \in[-0.25,0.1] \mathrm{GeV} / c^{2}$ and $M_{\mu \mu}-M_{\psi(2 S)} \in$ $[-0.15,0.1] \mathrm{GeV} / c^{2}$. We also require $M_{e^{+} e^{-}}>0.2 \mathrm{GeV} / c^{2}$ to remove the possible background from the radiative $B \rightarrow X_{s} \gamma$ decays or π^{0} Dalitz decays. Another background source is from random combinations with semileptonic B decays $(b \rightarrow c \rightarrow s, d)$. In this case, at least one of the leptons in $X_{s} \ell^{+} \ell^{-}$reconstruction is misidentified from another conjugate B decays. Since most of the semileptonic B decays produce a neutrino, we reject this background using missing mass, missing energy information, and the distance of two leptons along the positron beam (z axis). For continuum background $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s$ and c) events, we use modified Fox-Wolfram moments [10] that are combined into a Fisher discriminant. This discriminant is subsequently combined with the probabilities for the cosine of the B flight direction in the CM frame, the energy difference $\Delta E=E_{B}^{*}-E_{\text {beam }}$ [E_{B}^{*} is the energy of the B candidate in the $\Upsilon(4 S)$ CM frame] and χ^{2} value for the B decay vertex to form a likelihood ratio $\mathscr{R}=\mathscr{L}_{s} /\left(\mathscr{L}_{s}+\mathscr{L}_{q \bar{q}}\right)$. Here, $\mathscr{L}_{s}\left(\mathscr{L}_{q \bar{q}}\right)$ is a likelihood function for signal (continuum) events that is obtained from the signal (continuum) MC simulation.

We perform an extended unbinned maximum likelihood fit to the M_{bc} distribution in the region $M_{\mathrm{bc}}>5.20 \mathrm{GeV} / c^{2}$ to extract the signal. Other interesting measurements are the branching fraction of $B \rightarrow X_{s} \ell^{+} \ell^{-}$versus $M_{X_{s}}$ and $q^{2}\left(M_{\ell^{+} \ell^{-}}^{2}\right)$ variables, we divide $M_{X_{s}}$ and q^{2} into several regions and use M_{bc} fit to determine their branching fractions, these results are shown on Fig. 1.

3. Summary

We have measured the branching fraction of $B \rightarrow X_{s} \ell^{+} \ell^{-}$to be $\left(3.33 \pm 0.8_{-0.24}^{+0.19}\right) \times 10^{-6}$ with
10.1σ significance. The distributions of $\mathrm{d} \mathscr{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) v s . \mathrm{d} M_{X_{s}}$ and $\mathrm{d} \mathscr{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) v s . \mathrm{d} q^{2}$ are consistent with SM predictions. We have also measured the branching fractions of $B \rightarrow X_{8} e^{+} e^{-}$ and $B \rightarrow X_{s} \mu^{+} \mu^{-}$to be $\left(4.56 \pm 1.15_{-0.4}^{+0.33}\right) \times 10^{-6}$ and $\left(1.91 \pm 1.02_{-0.18}^{+0.16}\right) \times 10^{-6}$, respectively. The ratio of measured branching fraction $\mathscr{B}\left(B \rightarrow X_{s} e^{+} e^{-}\right) / \mathscr{B}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$is 2.39 ± 1.41. This value with its error bar is within our MC assumption: $\mathscr{B}\left(B \rightarrow X_{s} e^{+} e^{-}\right) / \mathscr{B}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)=1$; although the difference, the systematic error for $B \rightarrow X_{s} \ell^{+} \ell^{-}$efficiency is considered to be small.

The systematic errors (in the unit of percentage) are summarized in Table 1. There are three major sources of systematic errors: peaking backgrounds [from $B \rightarrow X_{s} J / \psi, X_{s} \psi(2 S), X_{s} \psi(3770)$, $X_{s} \psi(4040)$ and $X_{s} \psi(4160)$ decays], detector systematics (tracking and particle identification efficiencies) and MC modeling systematics $\left[\mathscr{B}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)\right.$assumption, $K^{*}-X_{s}$ transition and X_{s} decay fractions], etc.

Table 1: Systematic errors (in the unit of percentage) on the $B \rightarrow X_{s} e^{+} e^{-}$and $B \rightarrow X_{s} \mu^{+} \mu^{-}$branching fraction measurements.

Source	$B \rightarrow X_{s} e^{+} e^{-}$	$B \rightarrow X_{s} \mu^{+} \mu^{-}$
Signal PDF	± 0.3	± 0.1
$B \rightarrow X_{s} J / \psi, X_{s} \psi(2 S)$	± 1.2	± 0.9
$B \rightarrow X_{s} \psi(3770), X_{s} \psi(4040), X_{s} \psi(4160)$	± 0.9	± 0.9
$B \rightarrow X_{s} \pi \pi, X_{s} \pi \ell v$	${ }_{-0.5}^{+0.4}$	${ }_{-0.3}^{+0.2}$
Self-cross-feed	± 0.1	± 0.1
Tracking efficiency	± 3.6	± 3.6
$\ell^{ \pm}$efficiency	± 2.1	± 2.2
$K^{ \pm}$efficiency	± 0.4	± 1.0
$\pi^{ \pm}$efficiency	± 3.4	± 3.0
K_{s}^{0} efficiency	± 0.9	± 0.9
π^{0} efficiency	± 0.5	± 0.5
\mathscr{R} requirement	± 5.3	± 2.6
Fermi motion model	${ }^{+1.3}$	${ }^{+4.9}$
$K^{*}-X_{s}$ transition	${ }_{-6.0}^{+2.3}$	${ }_{-2.0}^{+2.7}$
X_{s} decay fractions	± 5.8	± 5.8
X_{s} decay fractions with two or more kaons	± 1.7	± 1.7
MC statistics	<0.1	<0.1
$B \bar{B}$ number	± 1.4	± 1.4

References

[1] A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. D 66, 034002 (2002).
[2] T. Hurth, hep-ph/0212304, SLAC-PUB-9604 (2003).
[3] A. Ali, hep-ph/0210183, CERN-TH/2002-284 (2002).
[4] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 88, 021801 (2002).

Figure 1: Upper left: Projection of the M_{bc} fit with a data sample containing $657 \times 10^{6} B \bar{B}$ pairs. The signal component $B \rightarrow X_{s} \ell^{+} \ell^{-}$is shown in black line, the background ($b \rightarrow c \rightarrow s, d$ and continuum), peaking background $\left[B \rightarrow X_{s} J / \psi, X_{s} \psi(2 S), X_{s} \psi(3770), X_{s} \psi(4040)\right.$ and $X_{s} \psi(4160)$], self-cross-feed components are shown in yellow, green, and blue solid shaded regions, respectively. Upper right: The $\mathrm{d} \mathscr{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / \mathrm{d} M_{X_{s}}$ distribution, the dot with error bars are data, the yellow shaded region is MC simulation. Lower: The $\mathrm{d} \mathscr{B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / \mathrm{d} q^{2}\left(M_{\ell^{+} \ell^{-}}^{2}\right)$ distribution, the dot with error bars are data, the yellow shaded region is MC simulation.
[5] B. Aubert et al. (BaBar Collaboration), hep-ex/0207082, SLAC-PUB-9323 (2002).
[6] A. Ishikawa et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251801 (2006).
[7] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 73, 092001 (2006).
[8] M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72, 092005 (2005).
[9] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 081802 (2004).
[10] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in this paper are described in S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).

[^0]: *Speaker.
 ${ }^{\dagger}$ On behalf of the Belle Collaboration

