

B ightarrow au v & $B ightarrow D^{(*)} au v$ decays at Belle

Jacek Stypuła**

H. Niewodniczański Institute of Nuclear Physics Kraków E-mail: Jacek.Stypula@ifj.edu.pl

We present measurements of the decays $B \rightarrow \tau v_{\tau}$ and $B \rightarrow D^{(*)} \tau v_{\tau}$ in a large data sample recorded with the Belle detector at the KEKB asymmetric energy e^+e^- collider. We obtain the branching fractions for these decays. The resulting constraints on a charged Higgs boson are also discussed.

35th International Conference of High Energy Physics July 22-28, 2010 Paris, France

*Speaker.

[†]On behalf of the Belle collaboration and supported by the Polish Ministry of Education and Science grant No N N202 287138.

1. Introduction

B meson decays with τ leptons in the final state, despite of experimental difficulties, are of great importance. In the Standard Model (SM) scenario measurement of the tauonic *B* decay can provide direct experimental determination of *B* meson decay constant, which can be compared to the lattice QCD calculations. Semitauonic *B* decays provide access to form-factors that cannot be measures in other semileptonic *B* decays. Due to large τ lepton mass both decay modes are sensitive to extended Higgs sector, $B \to \tau v_{\tau}$ through branching fraction (BF) effects while $B \to D^{(*)} \tau v_{\tau}$ mostly through other observables such as *e.g.* polarizations.

These analysis are based on a data samples recorded at the $\Upsilon(4S)$ resonance with the Belle detector [1] at the KEKB collider [2].

1.1 Experimental techniques

A decay with 2 or 3 neutrinos can be observed using kinematic constraints available only at B-factories which are clean sources of exclusive $B\overline{B}$ pairs. To ensure that we have missing fourmomentum consistent with multi neutrino hypothesis we take the advantage of the accompanying B meson referred to as B_{tag} . The B_{tag} can be reconstructed in several exclusive modes first and then checks whether remaining particles are consistent with the signal B (B_{sig}) decay can be done. We refer to this method as an "exclusive B_{tag} reconstruction". The B_{tag} can be also reconstructed inclusively from all the particles that remain after selecting B_{sig} candidate. We refer to this method as an "inclusive B_{tag} reconstruction". The analyses presented here exploit both mentioned approaches depending on the final state.

2. $B ightarrow \tau v$

In the SM a leptonic *B* decay is a *W*-mediated annihilation with the decay rate simply related to *B* meson decay constant f_B and the quark-mixing amplitude V_{ub} :

$$\mathscr{B}(B^+ \to l^+ \nu_l)\Big|_{\rm SM} = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B, \tag{2.1}$$

where G_F is the Fermi constant, m_B and m_l are the *B* meson and lepton masses while τ_B is the *B* meson lifetime. The decay is helicity suppressed thus the τ mode is favoured in comparison with the light lepton modes. This decay is also sensitive to charged Higgs which would modify the branching. *E.g.* in the type-II two-Higgs doublet model (2HDM) we have

$$\mathscr{B} = \mathscr{B}|_{\mathrm{SM}} \times r_H, \qquad r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2,$$
 (2.2)

where m_H is the charged Higgs mass and tan β is the ratio of Higgs vacuum expectation values [3].

Belle previously reported the first evidence of $B^+ \rightarrow \tau^+ v_{\tau}^{-1}$ decay with the "exclusive B_{tag} reconstruction" in hadronic modes [4]. The signal is extracted from a fit to the remaining energy in the electromagnetic calorimeter (E_{ECL}), which is the sum of the energies of neutral clusters

¹Charge conjugate modes are implied throughout this report unless otherwise stated.

	$\mathscr{B}(B^+ o au^+ u_ au)$
Belle hadronic tag	$[1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})] \times 10^{-4}$
Belle semileptonic tag	$[1.54^{+0.38}_{-0.37}(\text{stat})^{+0.29}_{-0.31}(\text{syst})] \times 10^{-4}$
SM – Eq. (2.1)	$[1.2\pm0.25] imes10^{-4}$
SM – CKM fitter	$[0.763^{+0.113}_{-0.061}] imes 10^{-4}$

Table 1: Summary of $B \to \tau v$ results at Belle with a comparison to SM predictions from Eq. (2.1) with $|V_{ub}|$ taken from [6], f_B taken from [7] and from CKM fitter results with $B \to \tau v$ [8].

Figure 1: Constraints on the type-II two-Higgs doublet model placed by Belle semileptonic tag result.

that are not associated with either the B_{tag} or the π^0 candidate from the $\tau^+ \rightarrow \pi^+ \pi^0 \overline{\nu}_{\tau}$ decay. For signal events, E_{ECL} must be either zero or a small value arising from beam background hits while background events are distributed toward higher E_{ECL} due to the contribution from additional neutral clusters. To better establish this decay mode and determine the BF with greater precision we have done a measurement where B_{tag} is reconstructed in semileptonic modes [5]. This result is consistent with the previous one and with the SM predictions (Table 1). Figure 1 shows the constraints placed by our recent result on the 2HDM.

3. $B \rightarrow D^{(*)} \tau v$

Semitauonic *B* decays are complementary to and competitive with tauonic ones due to different theoretical uncertainties and more observables. In $B \to D^{(*)} \tau v$ we are free from f_B and $|V_{ub}|$ which have large uncertainties. We have a dependence on the formfactors and $|V_{cb}|$ instead however the latter cancels out in the ratio

$$R = \frac{\mathscr{B}(B \to D\tau v_{\tau})}{\mathscr{B}(B \to Dl v_l)}.$$
(3.1)

The exclusive semitauonic decay was first observed by Belle in the $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ mode [9] using "inclusive B_{tag} reconstruction". At large missing masses most of background components behave combinatorial in the beam constrained mass $M_{\text{tag}} = \sqrt{E_{\text{beam}}^2 - p_{\text{tag}}^2}$, where E_{beam} is the

Decay mode	BF&significance from inclusive tag	BF&significance from exclusive tag
$B^+ ightarrow \overline{D}{}^{*0} au^+ u_{ au}$	$[2.12^{+0.28}_{-0.27}\pm0.29]\%$ 8.1 σ	$[3.04^{+0.69+0.40}_{-0.66-0.47}]\%$ 3.9 σ
$B^0 o D^{*-} au^+ u_ au$	$[2.02^{+0.40}_{-0.37}\pm0.37]\%$ 5.2 σ	$[2.56^{+0.75+0.31}_{-0.66-0.22}]\%$ 4.7 σ
$B^+ o \overline{D}{}^0 au^+ u_ au$	$[0.77 \pm 0.22 \pm 0.12]\%$ 3.5 σ	$[1.51^{+0.41}_{-0.39} + 0.24]\%$ 3.8 σ
$B^0 o D^- au^+ u_ au$	$[1.01^{+0.46+0.13}_{-0.41-0.11}]\%$ 2.6 σ	<u> </u>

Table 2: Summary of $B \to D^{(*)} \tau v$ results at Belle along with statistical and systematical uncertainties.

beam energy and p_{tag} is the momentum of B_{tag} candidate (residual particles). On the other hand the signal is visible as a well reconstructed B_{tag} and thus was extracted from a fit to M_{tag} . Recently we have done a next-step analysis which includes simultaneous extraction of signals in charged B decays to $D^*\tau v$ and to $D\tau v$ taking into account D^*D cross-feeds [10]. All the results including preliminary one using "exclusive B_{tag} reconstruction"[11] are summarized in Table 2.

These results are consistent within experimental uncertainties with SM [12] and provide constraints on 2HDM complementary to those from purely tauonic *B* decays [13].

4. Summary

The studies of B decays to τ at Belle brought significant advances in this field, providing the first evidence of the purely leptonic $B^+ \rightarrow \tau^+ v_{\tau}$ mode, semi-tauonic $B \rightarrow D \tau^+ v_{\tau}$ modes and the observation of semi-tauonic B decays in the $B \to D^* \tau^+ v_{\tau}$ channels. These results are consistent with the SM but, given the uncertainties, there is still a room for a sizeable non-SM contribution. Belle II experiment on SuperKEKB Super B-factory with ≈ 50 times higher statistics should measure these modes with much higher precision.

References

- [1] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth A 479 117 (2002)
- [2] S. Kurokawa, E. Kikutani, Nucl. Instr. and Meth A 499 1 (2003) and references therein
- [3] W. S. Hou, Phys. Rev. D 48, 2342 (1993)
- [4] K. Ikado et al. (Belle Collaboration), Phys. Rev. Lett. 97, 251802 (2006) [hep-ex/0604018v3]
- [5] K. Hara et al. (Belle Collaboration), Phys. Rev. D 82, 071101(R) (2010) [hep-ex/1006.4201v2]
- [6] http://www.slac.stanford.edu/xorg/hfag/semi/ichep08/
- [7] HPQCD Collaboration, Phys. Rev. D 80, 014503 (2009) [hep-lat/0902.1815v3]
- [8] http://ckmfitter.in2p3.fr/plots_FPCP10/
- [9] A. Matyja et al. (Belle Collaboration), Phys. Rev. Lett. 99, 191807 (2007) [hep-ex/0706.4429v2]
- [10] A. Bozek et al. (Belle Collaboration), Phys. Rev. D 82, 072005 (2010) [hep-ex/1005.2302v1]
- [11] I. Adachi et al. (Belle Collaboration), hep-ex/0910.4301v1
- [12] C.-H. Chen, C.-Q. Geng, JHEP 0610, 053 (2006) [hep-ph/0608166v3]
- [13] M. Tanaka, R. Watanabe, hep-ph/1005.4306v3