
P
o
S
(
I
C
H
E
P
 
2
0
1
0
)
2
9
2

Update to the Bodek-Yang Unified Model for
Electron- and Neutrino- Nucleon Scattering Cross
Sections

Arie Bodek∗University of Rochester

E-mail: bodek@pas.rochester.edu

Un-Ki Yang
University of Mancheter
E-mail: ukyang@cern.ch

We construct a model for inelastic neutrino- and electron-nucleon scattering cross sections us-
ing effective leading order parton distribution functions with a new scaling variable ξw. Non-
perturbative effects are well described using the ξw scaling variable, in combination with multi-
plicative K factors at low Q2. Our model describes all inelastic charged lepton-nucleon scattering
(including resonance) data (HERA/NMC/BCDMS/SLAC/JLab) ranging from very high Q2 to
very low Q2 and down to the photo-production region. The model describes existing inelastic
neutrino-nucleon scattering measurements, and is currently used in analyses of neutrino oscilla-
tion experiments in the few GeV region.
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Standard PDFs are extracted from global fits to various sets of deep inelastic (DIS) scattering
data at high energies and high Q2, where non-perturbative QCD effects are negligible. PDF fits are
performed within the framework of QCD in either LO, NLO or NNLO.

In order to use the PDFs at low Q2 we use a new scaling variable (ξw) to construct effective
LO PDFs that account for the contributions from target mass corrections, non-perturbative QCD
effects, and higher order QCD terms.

Our proposed scaling variable, ξw is derived as follows. Using energy momentum conserva-
tion, the fractional momentum, ξ carried by a quark in a proton target of mass M is

ξ =
2xQ

′2

Q2(1+
√

1+(2Mx)2/Q2)

2Q
′2 = [Q2 +M f

2−Mi
2]+

√
(Q2 +M f

2−Mi
2)2 +4Q2(Mi

2 +P2
T )

Here Mi is the initial quark mass with average initial transverse momentum PT , and M f is the
mass of the final state quark. Assuming Mi = 0,PT = 0 we construct following scaling variable

ξw =
2x(Q2 +M f

2 +B)

Q2[1+
√

1+(2Mx)2/Q2]+2Ax
,

where in general M f = 0 (except for the case of charm-production in neutrino scattering for which
M f =1.32 GeV). The parameter A is used to account (on average) for the higher order QCD terms
and dynamic higher twist in the form of an enhanced target mass term (the effects of the proton
target mass is already taken into account in the denominator of ξw). The parameter B is used to
account (on average) for the initial state quark transverse momentum, and also for the effective
mass of the final state quark originating from multi-gluon emission. A non-zero B also allows us
to describe data in the photoproduction limit (all the way down to Q2=0).

In leading order QCD (e.g. GRV98 PDFs), F2,LO for the scattering of electrons and muons on
proton (or neutron) targets is given by the sum of quark and anti-quark distributions (each weighted
the square of the quark charges):

F
e/µ

2,LO(x,Q2) = Σie2
i
[
xqi(x,Q2)+ xqi(x,Q

2)
]
.

Our proposed effective LO PDFs model includes the following:

1. The GRV98 LO Parton Distribution Functions (PDFs) are used to describe F
e/µ

2,LO(x,Q2).
The minimum Q2 value for these PDFs is 0.8 GeV2.

2. The scaling variable x is replaced with the scaling variable ξw.

F
e/µ

2,LO(x,Q2) = Σie2
i
[
ξwqi(ξw,Q2)+ξwqi(ξw,Q2)

]
.

3. We multiply all PDFs by vector K factors such that they have the correct form in the low Q2

photo-production limit. We use different forms for the sea and valence quarks.

Kvector
sea (Q2) =

Q2

Q2 +Cs
, Kvector

valence(Q
2) = [1−G2

D(Q2)]
Q2 +Cv2

Q2 +Cv1

2
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where GD = 1/(1 + Q2/0.71)2 is the proton elastic form factor. This form for the K factor
for valence quarks is motivated by closure arguments and the Adler sum rule. At low Q2,
[1−G2

D(Q2)] is approximately Q2/(Q2 +0.178). These modifications are included in order
to describe low Q2 data in the photoproduction limit (Q2=0), where F

e/µ

2 (x,Q2) is related to
the photoproduction cross section according to

σ(γ p) =
4π2αEM

Q2 F
e/µ

2 (x,Q2) =
0.112mb

Q2 F
e/µ

2 (x,Q2)

4. We freeze the evolution of the GRV98 PDFs at a value of Q2 = 0.80 GeV2. Below this Q2,
F2 is given by;

F
e/µ

2 (x,Q2 < 0.8) = Kvector(Q2)F e/µ

2,LO(ξw,Q2 = 0.8)

5. Finally, we fit for the parameters of the modified effective GRV98 LO PDFs (e.g. ξw) to
inelastic charged lepton scattering data on hydrogen and deuterium targets (SLAC, BCDMS,
NMC, H1). We obtain an excellent fit with the following initial parameters: A=0.419,
B=0.223, and Cv1=0.544, Cv2=0.431, and Csea=0.380, with χ2/DOF = 1235/1200. Because
of these additional K factors, we find that the GRV98 PDFs need to be scaled up by a nor-
malization factor N=1.011.

We now describe the second iteration of the fit. Theoretically, the Ki factors are not required
to be the same for the u and d valence quarks or the u, d and s sea quarks and antiquarks. In order
to allow flexibility in our effective LO model, we treat the Ki factors for u and d valence and sea
quarks separately. As the predictions of our model are in good agreement with photoproduction
data, and for much of the resonance region, we now proceed to include photo-production data in
the fit. In order to get additional constraints on the different K factors for up and down quarks
separately, we use both hydrogen and deuterium data.

The second iteration includes the additional photo-production and resonance data in the fit,.

KLW =
ν2 +CL−Ehad

ν2 , Kvector
sea−strange(Q

2) =
Q2

Q2 +Cvector
sea−strange

, Kvector
sea−up(Q

2) =
Q2

Q2 +Cvector
sea−up

,

Kvector
sea−down(Q

2) =
Q2

Q2 +Cvector
sea−down

, Kvector
valence−up(Q

2) = KLW [1−G2
D(Q2)]

Q2 +Cvector
v2u

Q2 +Cvector
v1u

,

Kvector
valence−down(Q

2) = KLW [1−G2
D(Q2)]

Q2 +Cvector
v2d

Q2 +Cvector
v1d

The best fit is given by A = 0.621± 0.009, B = 0.380± 0.004, Cvector
v1d = 0.341± 0.007, Cvector

v1u =
0.417± 0.024, Cvector

v2d = 0.323± 0.051, Cvector
v2u = 0.264± 0.015, and CL−Ehad = 0.217± 0.015.

The sea factors are Cvector
sea−down=0.621, Cvector

sea−up=0.363, and Cvector
sea−strange was set to be the same as

Cvector
sea−down . Here, the parameters are in units of (GeV/c)2. The fit χ2/DOF =2357/1717, and

N = 1.026±0.003. The resonance data add to the χ2/nd f because the fit only provides a smooth
average over the resonances. No neutrino data are included in the fit.
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For high energy neutrino scattering on quarks and antiquarks, the vector and axial contribu-
tions are the same. At very high Q2, where the quark parton model is valid, both the vector and
axial K factors expected to be 1.0. Therefore neutrinos and antineutrino structure functions for an
iso-scalar target are given by :

F ν
2 (x,Q2) = Σi2

[
ξwqi(ξw,Q2)+ξwqi(ξw,Q2)

]
.

xF ν
3 (x,Q2) = Σi2

[
ξwqi(ξw,Q2)−ξwqi(ξw,Q2)

]
.

There are two major differences between the case of electron/muon inelastic scattering and the
case of neutrino and antineutrino scattering. In the neutrino case we have one additional structure
function F ν

3 (x,Q2). In addition, at low Q2 there should be a difference between the vector and axial
Ki factors due a difference in the non-perturbative axial vector contributions. Unlike the vector F2

which must go to zero in the Q2 = 0 limit, the axial part of F2 is non-zero in the Q2 = 0 limit.
We account for kinematic and dynamic higher twist and higher order QCD effects in F2 by

fitting the parameters of the scaling variable ξw and the K factors to low Q2 data for F
e/µ

2 (x,Q2).
These should also be valid the vector part of F2 in neutrino scattering. However, the higher order
QCD effects in F2 and xF3 are different. We account for the different scaling violations in F2

and xF3 by adding another correction H(x,Q2) to the expression for xF3

The differences between neutrinos and charged lepton scattering are accounted for in the fol-
lowing expressions:

F νvector
2 (x,Q2) = ΣiKvector

i (Q2)ξwqi(ξw,Q2)+Σ jKvector
j (Q2)ξwq j(ξw,Q2)

F νaxial
2 (x,Q2) = ΣiKaxial

i (Q2)ξwqi(ξw,Q2)+Σ jKaxial
j (Q2)ξwq j(ξw,Q2)

xF ν
3 (x,Q2) = 2H(x,Q2)

[
ΣiKxF3

i ξwqi(ξw,Q2)−Σ jKxF3
j ξwq j(ξw,Q2)

]
Where i denotes (valence−up), (valence−down), (sea−up), (sea−down), and (sea−strange).
Detailed expressions are given in reference[1].

With the above assumptions we calculate the differential cross sections for neutrinos and an-
tineutrino scattering. We also correct for nuclear effects in iron using the ratio of iron to deuterium
structure functions as measured in muon and electron scattering experiments.

Our predictions are in good agreement with the CCFR CDHSW neutrino and antineutrino
differential cross sections.
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