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The result of the 3-year neutrino magnetic moment measurement at the Kalinin Nuclear Power
Plant (KNPP) with the GEMMA spectrometer is presented. Antineutrino-electron scattering is
investigated. A high-purity germanium detector of 1.5 kg placed at a distance of 13.9 m from
the centre of the 3 GWth reactor core is used in the spectrometer. The antineutrino flux is
2.7×1013 ν̄e/cm2/s. The differential method is used to extract ν-e electromagnetic scattering
events. The scattered electron spectra taken in 5184+6798 and 1853+1021 hours for the reactor
ON and OFF periods are compared. The upper limit for the neutrino magnetic moment µν was
found to be 3.2×10−11µB at 90% CL.
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The Minimally Extended Standard Model predicts a very small magnetic moment for the mas-
sive neutrino (µν ∼ 10−19µB) which cannot be observed in an experiment at present. On the other
hand, there is a number of extensions of the theory beyond the SM where the Majorana neutrino
magnetic moment (NMM) could be at the level of 10−(10...12) µB irrespective of the neutrino mass,
whereas the Dirac NMM could not exceed 10−14µB (see, e.g, [1] and references therein). There-
fore, observation of an NMM value higher than 10−14 µB would be evidence for New Physics and,
in addition, indicate undoubtedly that the neutrino is a Majorana particle. That is why it is rather
important to make laboratory NMM measurements sensitive enough to reach the ∼10−11µB region.
However, the sensitivity of reactor experiments only increased by a factor of three since the Savanna
River experiment by Reines’ group: from (2 . . .4)×10−10µB [2] to (6 . . .7)×10−11µB [3, 4]. Sim-
ilar limits were obtained for solar neutrinos [5, 6], but due to oscillations at long distance (as well
as matter-enhanced oscillations in the Sun) their flavor composition changes and therefore the solar
NMM results could differ from the reactor ones.

A laboratory measurement of the NMM is based on its contribution to the ν-e scattering. For
nonzero NMM the ν-e differential cross section is given [2] by a sum of the weak interaction cross
section (dσW/dT ) and the electromagnetic cross section (dσEM/dT ). At a low recoil electron
energy (T ≪ Eν ) the value of dσW/dT becomes almost constant, while dσEM/dT behaves as T−1,
so that the lowering of the detector threshold leads to a considerable increase in the NMM effect
with respect to the weak unremovable contribution.1
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Figure 1: Ge detector inside the active (NaI, PS) and passive (Cu, Pb) shielding.

To realize this useful feature in our GEMMA spectrometer [4], we use a 1.5 kg HPGe detector
with an energy threshold as low as 3 keV. The background is suppressed in several steps. First, the

1According to H. T. Wong et al. [7], the NMM effect could be significantly enhanced by atomic ionization, but the
magnitude of such enhancement is questionable [8].
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detector is placed inside a cup-like NaI crystal with 14 cm thick walls surrounded with 5 cm of
electrolytic copper and 15 cm of lead (Fig. 1). Active and passive shielding reduces the external γ-
background in the ROI to a level of ∼ 2 counts/keV/kg/day. Being located just under reactor #2 of
the KNPP (at a distance of 13.9 m from the reactor core, which corresponds to an antineutrino flux
of 2.7× 1013 ν̄e/cm2/s), the detector is well shielded against the hadronic component of cosmic
rays by the reactor body and technological equipment (overburden≃70 m w.e.). To suppress low-
energy background caused by elastic scattering of secondary neutrons (produced by cosmic muons
in the massive Pb+Cu shielding), the spectrometer is covered with additional plastic scintillator
plates (PS) which generate relatively long µ-veto signals.
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Figure 2: Example of the Fourier analysis made with different shaping-times: ADC-2 and ADC-3 operate
with 4 µs and 12 µs pulses, respectively. Plot (a) is made before and (b) – after the “audio-frequency” rejec-
tion; it is seen that most of the rejected events are non-diagonal. (The color intensity scale is logarithmic.)

Special care is taken to reduce non-physical low-amplitude circuit noise (afterpulses, radio
frequency interference, microphonism, etc.). Thus, for example, we reject those events which are
separated by a time interval shorter than 80 ms or equal to (n · 20.0± 0.1) ms. With this "audio-
frequency" rejection we suppress the noise caused by mechanical vibrations (“ringing”) and the
50 Hz power-line frequency. In addition, the detector signal is processed by three parallel inde-
pendent electronic channels with different shaping time (2, 4 and 12 µs), which allows a primitive
Fourier analysis (Fig. 2) to be performed à posteriori, so artefact signals are discriminated.

In order to get a recoil electron spectrum, we use a differential method comparing the spectra
measured during the reactor operation (ON) and shutdown (OFF) periods, the last one being con-
sidered as a background. In our previous work [4] we presented Phase-I (13 months’ measurement
including 5184 and 1853 hours of the reactor ON and OFF periods, respectively). Today we can
add Phase-II – 19 months from 09.2006 to 05.2008. Unfortunately, for some organizational and
technical reasons, there were several interruptions in the measurement. After the preliminary se-
lection, 6798 ON-hours and 1021 OFF-hours of active time were found to be available for analysis.

Fitting the background OFF spectrum in the ROI from 2.9 keV to 55 keV with a parametrized
smooth function (Fig. 3) and comparing the ON spectrum channel by channel with the obtained
background curve, we extract their normalized difference X ≡ ON−OFF−Weak

Electromagnetic which actually repre-
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sents the NMM value squared (in terms of 10−11µB). Averaging over the total ROI and adding the
data of the Phase-I, we get at the 90%CL the following upper limit: µν ≤ 3.2× 10−11µB, which
could be an order of magnitude lower if the Atomic Ionization Enhancement [7] really exists (in
this case our analysis gives the limit as low as µν ≤ 0.5×10−11µB).
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Figure 3: Fragments of the experimental ON and OFF spectra measured in Phase-II, as well as their differ-
ence normalized by the electromagnetic cross section. (Only a part of the available statistics is presented.)
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